Isospectral deformations of closed riemannian manifolds with different scalar curvature
Carolyn S. Gordon; Ruth Gornet; Dorothee Schueth; David L. Webb; Edward N. Wilson
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 2, page 593-607
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGordon, Carolyn S., et al. "Isospectral deformations of closed riemannian manifolds with different scalar curvature." Annales de l'institut Fourier 48.2 (1998): 593-607. <http://eudml.org/doc/75294>.
@article{Gordon1998,
abstract = {We construct the first examples of continuous families of isospectral Riemannian metrics that are not locally isometric on closed manifolds , more precisely, on $S^n\times T^m$, where $T^m$ is a torus of dimension $m\ge 2$ and $S^n$ is a sphere of dimension $n\ge 4$. These metrics are not locally homogeneous; in particular, the scalar curvature of each metric is nonconstant. For some of the deformations, the maximum scalar curvature changes during the deformation.},
author = {Gordon, Carolyn S., Gornet, Ruth, Schueth, Dorothee, Webb, David L., Wilson, Edward N.},
journal = {Annales de l'institut Fourier},
keywords = {spectral geometry; isospectral deformations; scalar curvature},
language = {eng},
number = {2},
pages = {593-607},
publisher = {Association des Annales de l'Institut Fourier},
title = {Isospectral deformations of closed riemannian manifolds with different scalar curvature},
url = {http://eudml.org/doc/75294},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Gordon, Carolyn S.
AU - Gornet, Ruth
AU - Schueth, Dorothee
AU - Webb, David L.
AU - Wilson, Edward N.
TI - Isospectral deformations of closed riemannian manifolds with different scalar curvature
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 2
SP - 593
EP - 607
AB - We construct the first examples of continuous families of isospectral Riemannian metrics that are not locally isometric on closed manifolds , more precisely, on $S^n\times T^m$, where $T^m$ is a torus of dimension $m\ge 2$ and $S^n$ is a sphere of dimension $n\ge 4$. These metrics are not locally homogeneous; in particular, the scalar curvature of each metric is nonconstant. For some of the deformations, the maximum scalar curvature changes during the deformation.
LA - eng
KW - spectral geometry; isospectral deformations; scalar curvature
UR - http://eudml.org/doc/75294
ER -
References
top- [Be] P. BÉRARD, Variétés riemanniennes isospectrales non isométriques, Séminaire Bourbaki 705, no 177-178 (1988-1989), 127-154. Zbl0703.53035
- [Br] R. BROOKS, Constructing isospectral manifolds, Amer. Math. Monthly, 95 (1988), 823-839. Zbl0673.58046MR89k:58285
- [BT] R. BROOKS and R. TSE, Isospectral surfaces of small genus, Nagoya Math. J., 107 (1987), 13-24. Zbl0605.58041MR88m:58182
- [Bu] P. BUSER, Isospectral Riemann surfaces, Ann. Inst. Fourier (Grenoble), 36-2 (1986), 167-192. Zbl0579.53036MR88d:58123
- [D] D. DETURCK, Audible and inaudible geometric properties, Rend. Sem. Fac. Sci. Univ. Cagliari, 58 (supplement 1988), 1-26.
- [DG1] D. DETURCK and C. GORDON, Isospectral deformations I: Riemannian structures on two-step nilspaces, Comm. Pure Appl. Math., 40 (1987), 367-387. Zbl0649.53025MR88m:58186
- [DG2] D. DETURCK and C. GORDON, Isospectral deformations II: Trace formulas, metrics, and potentials, Comm. Pure Appl. Math., 42 (1989), 1067-1095. Zbl0709.53030MR91e:58197
- [E] P. EBERLEIN, Geometry of two-step nilpotent groups with a left invariant metric, Ann. Sci. École Norm. Sup., (4) 27 (1994), 611-660. Zbl0830.53039MR95m:53059
- [G1] C.S. GORDON, You can't hear the shape of a manifold, New Developments in Lie Theory and Their Applications (J. Tirao and N. Wallach, eds.), Birkhäuser, 1992. Zbl0772.58062MR93m:58113
- [G2] C.S. GORDON, Isospectral closed Riemannian manifolds which are not locally isometric, J. Differential Geom., 37 (1993), 639-649. Zbl0792.53037MR94b:58098
- [G3] C.S. GORDON, Isospectral closed Riemannian manifolds which are not locally isometric, Part II, Contemporary Mathematics: Geometry of the Spectrum (R. Brooks, C. Gordon, P. Perry, eds.), vol. 173, Amer. Math. Soc., 1994, 121-131. Zbl0811.58063MR95k:58166
- [GGt] C.S. GORDON and R. GORNET, Spectral geometry of nilmanifolds, Proceedings of the Summer University of Southern Stockholm: Advances in Inverse Spectral Geometry, Birkhäuser, 1997, 23-49. Zbl0892.58076MR2000m:58058
- [GWW] C.S. GORDON, D. WEBB, and S. WOLPERT, Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., 110 (1992), 1-22. Zbl0778.58068MR93h:58172
- [GW1] C.S. GORDON and E.N. WILSON, Isospectral deformations of compact solvmanifolds, J. Differential Geom., 19 (1984), 241-256. Zbl0523.58043MR85j:58143
- [GW2] C.S. GORDON and E.N. WILSON, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J., 33 (1986), 253-271. Zbl0599.53038MR87k:58275
- [GW3] C.S. GORDON and E.N. WILSON, Continuous families of isospectral Riemannian metrics which are not locally isometric, J. Differential Geom., to appear. Zbl0915.58104
- [Gt1] R. GORNET, A new construction of isospectral Riemannian manifolds with examples, Michigan Math. J., 43 (1996), 159-188. Zbl0851.53024MR97b:58143
- [Gt2] R. GORNET, Continuous families of Riemannian manifolds isospectral on functions but not on 1-forms, J. Geom. Anal., to appear. Zbl1009.58023
- [I] A. IKEDA, On lens spaces which are isospectral but not isometric, Ann. Sci. École Norm. Sup., (4) 13 (1980), 303-315. Zbl0451.58037MR83a:58091
- [M] J. MILNOR, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), 542. Zbl0124.31202MR28 #5403
- [Sch] D. SCHUETH, Isospectral deformations on Riemannian manifolds which are diffeomorphic to compact Heisenberg manifolds, Comment. Math. Helv., 70 (1995), 434-454. Zbl0847.58078MR96g:58200
- [Su] T. SUNADA, Riemannian coverings and isospectral manifolds, Ann. of Math., (2) 121 (1985), 169-186. Zbl0585.58047MR86h:58141
- [Sz] Z. SZABO, Locally nonisometric yet super isospectral spaces, preprint. Zbl0964.53026
- [V] M.F. VIGNÉRAS, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math., (2) 112 (1980)? 21-32. Zbl0445.53026MR82b:58102
- [W] E.N. WILSON, Isometry groups on homogeneous nilmanifolds, Geom. Dedicata, 12 (1982), 337-346. Zbl0489.53045MR84a:53048
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.