On weak convergence of sampled dynamical systems

Nadine Guillotin-Plantard[1]

  • [1] Université Claude Bernard- Lyon 1, LaPCS - 50 avenue Tony Garnier, 69366 Lyon Cedex 07 (France)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 1, page 211-233
  • ISSN: 0373-0956

Abstract

top
Let T α be a rotation on the circle by an irrational angle α , let ( S k ) k 0 be a transient -random walk. Let f L 2 ( μ ) and H ] 0 , 1 [ , we study the weak convergence of the sequence 1 n H k = 0 [ n t ] - 1 f T α S k , n 1 .

How to cite

top

Guillotin-Plantard, Nadine. "Sur la convergence faible des systèmes dynamiques échantillonnés." Annales de l’institut Fourier 54.1 (2004): 211-233. <http://eudml.org/doc/116106>.

@article{Guillotin2004,
abstract = {Soit $T_\{\alpha \}$ la rotation sur le cercle d’angle irrationnel $\alpha $, soit $(S_\{k\})_\{k\ge 0\}$ une marche aléatoire transiente sur $\mathbb \{Z\}$. Soit $f\in L^\{2\}(\mu )$ et $H\in \ ]0,1[$, nous étudions la convergence faible de la suite $\{1\over \{n^\{H\}\}\}\sum _\{k=0\}^\{[nt]-1\}f\circ T_\{\alpha \}^\{S_\{k\}\},\ \ n\ge 1.$},
affiliation = {Université Claude Bernard- Lyon 1, LaPCS - 50 avenue Tony Garnier, 69366 Lyon Cedex 07 (France)},
author = {Guillotin-Plantard, Nadine},
journal = {Annales de l’institut Fourier},
keywords = {dynamical system; random walk; fractional brownian motion; weak convergence},
language = {fre},
number = {1},
pages = {211-233},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sur la convergence faible des systèmes dynamiques échantillonnés},
url = {http://eudml.org/doc/116106},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Guillotin-Plantard, Nadine
TI - Sur la convergence faible des systèmes dynamiques échantillonnés
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 1
SP - 211
EP - 233
AB - Soit $T_{\alpha }$ la rotation sur le cercle d’angle irrationnel $\alpha $, soit $(S_{k})_{k\ge 0}$ une marche aléatoire transiente sur $\mathbb {Z}$. Soit $f\in L^{2}(\mu )$ et $H\in \ ]0,1[$, nous étudions la convergence faible de la suite ${1\over {n^{H}}}\sum _{k=0}^{[nt]-1}f\circ T_{\alpha }^{S_{k}},\ \ n\ge 1.$
LA - fre
KW - dynamical system; random walk; fractional brownian motion; weak convergence
UR - http://eudml.org/doc/116106
ER -

References

top
  1. R. Burton, M. Denker, On the central limit theorem for dynamical systems, Trans. of the Amer. Math. Soc. 302 (1987), 715-726 Zbl0628.60030MR891642
  2. N. Guillotin-Plantard, Sur la convergence faible des systèmes dynamiques échantillonnés, C. R. Acad. Sci., Paris 333 (2001), 583-588 Zbl0996.60032MR1860934
  3. J.-P. Kahane, Some random series of functions, (1985), Cambridge University Press Zbl0571.60002MR833073
  4. L. Kuipers, et H. Niederreiter, Uniform distribution of sequences, (1974), Wiley and sons Zbl0281.10001MR419394
  5. M. Lacey, On central limit theorems, modulus of continuity and Diophantine type for irrational rotations, Journal d'Analyse Mathématique 61 (1993), 47-59 Zbl0790.60027MR1253438
  6. M. Lacey, K. Petersen, M. Wierdl, D. Rudolph, Random ergodic theorems with universally representative sequences, Annales de l'institut Henri Poincaré 30 (1994), 353-395 Zbl0813.28004MR1288356
  7. F.-L. Spitzer, Principles of random walks, (1976), Springer, New York Zbl0359.60003MR388547
  8. D. Volný, Invariance principles and Gaussian approximation for strictly stationary processes, Trans. Amer. Math. Soc. 351 (1999), 3351-3371 Zbl0939.37006MR1624218
  9. A. Zygmund, Trigonometric series, (1959), Cambridge University Press Zbl0085.05601MR107776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.