The Hua system on irreducible Hermitian symmetric spaces of nontube type
- [1] Uniwersytet Wroclawski, Instytut Matematyczny, Plac Grunwaldzki 2/4, 50-384 Wroclaw, (Pologne)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 1, page 81-127
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBuraczewski, Dariusz. "The Hua system on irreducible Hermitian symmetric spaces of nontube type." Annales de l’institut Fourier 54.1 (2004): 81-127. <http://eudml.org/doc/116109>.
@article{Buraczewski2004,
abstract = {Let $G/K$ be an irreducible Hermitian symmetric space of noncompact type. We study a $G$-
invariant system of differential operators on $G/K$ called the Hua system. It was proved
by K. Johnson and A. Korányi that if $G/K$ is a Hermitian symmetric space of tube type,
then the space of Poisson-Szegö integrals is precisely the space of zeros of the Hua
system. N. Berline and M. Vergne raised the question about the nature of the common
solutions of the Hua system for Hermitian symmetric spaces of nontube type. In this paper
we show that these are exactly the pluriharmonic functions.},
affiliation = {Uniwersytet Wroclawski, Instytut Matematyczny, Plac Grunwaldzki 2/4, 50-384 Wroclaw, (Pologne)},
author = {Buraczewski, Dariusz},
journal = {Annales de l’institut Fourier},
keywords = {pluriharmonic functions; Hua system; Hermitian symmetric spaces; Siegel domains},
language = {eng},
number = {1},
pages = {81-127},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Hua system on irreducible Hermitian symmetric spaces of nontube type},
url = {http://eudml.org/doc/116109},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Buraczewski, Dariusz
TI - The Hua system on irreducible Hermitian symmetric spaces of nontube type
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 1
SP - 81
EP - 127
AB - Let $G/K$ be an irreducible Hermitian symmetric space of noncompact type. We study a $G$-
invariant system of differential operators on $G/K$ called the Hua system. It was proved
by K. Johnson and A. Korányi that if $G/K$ is a Hermitian symmetric space of tube type,
then the space of Poisson-Szegö integrals is precisely the space of zeros of the Hua
system. N. Berline and M. Vergne raised the question about the nature of the common
solutions of the Hua system for Hermitian symmetric spaces of nontube type. In this paper
we show that these are exactly the pluriharmonic functions.
LA - eng
KW - pluriharmonic functions; Hua system; Hermitian symmetric spaces; Siegel domains
UR - http://eudml.org/doc/116109
ER -
References
top- A. Bonami, D. Buraczewski, E. Damek, A. Hulanicki, R. Penney, B. Trojan, Hua system and pluriharmonicity for symmetric irreducible Siegel domains of type II, Journal of Functional Analysis 188 (2002), 38-74 Zbl0999.31005MR1878631
- D. Buraczewski, E. Damek, A. Hulanicki, Bounded pluriharmonic functions on symmetric irreducible Siegel domains, Mathematische Zeitschrift 240 (2002), 169-195 Zbl1008.32013MR1906712
- N. Berline, M. Vergne, Equations de Hua et noyau de Poisson, 880 (1981), 1-51, Springer-Verlag Zbl0521.32024MR644825
- E. Damek, A. Hulanicki, Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math 411 (1990), 1-38 Zbl0699.22012MR1072971
- E. Damek, A. Hulanicki, D. Müller, M. Peloso, Pluriharmonic functions on symmetric irreducible Siegel domains, Geom. and Funct. Anal 10 (2000), 1090-1117 Zbl0969.31007MR1792830
- E. Damek, A. Hulanicki, R. Penney, Hua operators on bounded homogeneous domains in and alternative reproducing kernels for holomorphic functions, Journal of Functional Analysis 151 (1997), 77-120 Zbl0887.43005MR1487771
- J. Faraut, A. Korányi, Analysis On Symmetric Cones, (1994), Clarendon Press, Oxford Zbl0841.43002MR1446489
- Harish, - Chandra, Discrete series for semisimple Lie groups II, Acta Math 116 (1966), 1-111 Zbl0199.20102MR219666
- S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, (1962), Academic Press, New York Zbl0451.53038MR514561
- S. Helgason, Groups and Geometric Analysis, (1984), Academic Press, Orlando Zbl0543.58001MR754767
- S. Helgason, Geometric Analysis on Symmetric Spaces, (1994), American Mathematical Society, Providence Zbl0809.53057MR1280714
- L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Science Press, Peking (1958) (1963), Amer. Math. Soc. Transl. Zbl0507.32025MR171936
- K. Johnson, A. Korányi, The Hua operators on bounded symmetric domains of tube type, Annals of Math 111 (1980), 589-608 Zbl0468.32007MR577139
- K. Johnson, Remarks on the theorem of Korányi and Malliavin on the Siegel upper half-plane of rank two, Proc. Amer. Math. Soc 67 (1977), 351-356 Zbl0395.22012MR476918
- K. Johnson, Differential equations and the Bergman-Shilov boundary on the Siegel upper half-plane, Arkiv for Matematik 16 (1978), 95-108 Zbl0395.22013MR499140
- A. Korányi, P. Malliavin, Poisson formula and compound diffusion associated to an overdetermined elliptic system on the Siegel halfplane of rank two, Acta Math 134 (1975), 185-209 Zbl0318.60066MR410278
- A. W. Knapp, Lie Groups Beyond an Introduction, (1996), Birkhäuser, Boston--Basel--Berlin Zbl0862.22006MR1399083
- A. Korányi, Analysis and Geometry on Complex Homogeneous Domains, chapter Function Spaces on Bounded Symmetric Domains (2000), 183-281, Birkhäuser, Boston--Basel--Berlin Zbl0958.32022MR1727259
- A. Korányi, S. Vági, Rational inner functions on bounded symmetric domains, Trans. A. M. S 254 (1979), 179-193 Zbl0439.32006MR539914
- A. Korányi, J. Wolf, Realization of Hermitian symmetric spaces as generalized half-planes, Annals of Math 81 (1965), 265-288 Zbl0137.27402MR174787
- M. Lassalle, Les équations de Hua d'un domaine borné symétrique de tube type, Invent. Math 77 (1984), 129-161 Zbl0582.32042MR751135
- A. Raugi, Fonctions harmoniques sur les groupes localement compact à base dénombrable, Bull. Soc. Math. France, Mémoire 54 (1977), 5-118 Zbl0389.60003MR517392
- I. Satake, Algebraic structures of symmetric domains, (1980), Iwanami-Shoten and Princeton Univ. Press Zbl0483.32017MR591460
- S. Thangavelu, Harmonic Analysis on the Heisenberg Group, (1998), Birkhäuser, Boston--Basel--Berlin Zbl0892.43001MR1633042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.