Conformal foliations

Cédric Tarquini[1]

  • [1] U.M.P.A., École Normale Supérieure de Lyon, allée d'Italie, 69364 Lyon cedex 07 (France)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 2, page 453-480
  • ISSN: 0373-0956

Abstract

top
In this article we prove that every conformal foliation, transversely analytic, of codimension at most three on a compact connected manifold is either transversely Möbius or Riemannian. This theorem can be seen as a generalisation of the Ferrand-Obata theorem transversely to a foliation.

How to cite

top

Tarquini, Cédric. "Feuilletages conformes." Annales de l’institut Fourier 54.2 (2004): 453-480. <http://eudml.org/doc/116118>.

@article{Tarquini2004,
abstract = {Dans cet article nous montrons que tout feuilletage conforme, transversalement analytique, de codimension supérieure ou égale à trois sur une variété compacte connexe est transversalement Möbius ou riemannien. Ce théorème peut être vu comme une généralisation, transversalement à un feuilletage, du théorème Ferrand-Obata.},
affiliation = {U.M.P.A., École Normale Supérieure de Lyon, allée d'Italie, 69364 Lyon cedex 07 (France)},
author = {Tarquini, Cédric},
journal = {Annales de l’institut Fourier},
keywords = {foliations; pseudogroups; conformal differential geometry},
language = {fre},
number = {2},
pages = {453-480},
publisher = {Association des Annales de l'Institut Fourier},
title = {Feuilletages conformes},
url = {http://eudml.org/doc/116118},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Tarquini, Cédric
TI - Feuilletages conformes
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 2
SP - 453
EP - 480
AB - Dans cet article nous montrons que tout feuilletage conforme, transversalement analytique, de codimension supérieure ou égale à trois sur une variété compacte connexe est transversalement Möbius ou riemannien. Ce théorème peut être vu comme une généralisation, transversalement à un feuilletage, du théorème Ferrand-Obata.
LA - fre
KW - foliations; pseudogroups; conformal differential geometry
UR - http://eudml.org/doc/116118
ER -

References

top
  1. V. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, (1980), Moscou Zbl0956.34502MR626685
  2. T. Asuke, On transversaly flat conformal foliations with good measures II, Hiroshima Math. J 28 (1998), 523-525 Zbl0932.53023MR1657497
  3. M. Belliart, On the dynamics of certain actions of free groups on closed real analytic manifolds, Commentarii Mathematici Helvetici 77 (2002), 524-548 Zbl1140.37312MR1933788
  4. M. Brunella, On transversely holomorphic flows I, Inventiones Mathematicae 126 (1996), 265-279 Zbl0873.57021MR1411132
  5. J. Ferrand, Transformations conformes et quasi conformes des variétés riemanniennes : application à la démonstration d'une conjecture de A. Lichnerowicz, C.R.Acad.Sci. Paris, Série A 269 (1969), 583-586 Zbl0201.09701
  6. J. Ferrand, The action of conformal transformations on a Riemannian manifold, Mathematische Annalen 304 (1996), 277-291 Zbl0866.53027MR1371767
  7. C. Frances, C. Tarquini, Autour du théorème de Ferrand-Obata, Annals of Global Analysis and Geometry 21 (2002), 51-62 Zbl1005.53011MR1889249
  8. S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, (1987-1990), Springer-Verlag, Berlin-Heidelberg Zbl0636.53001MR1083149
  9. É. Ghys, Flots transversalement affines et tissus feuilletés, Mémoire de la Société Mathématiques de France (N.S) 46 (1991), 123-150 Zbl0761.57016MR1125840
  10. É. Ghys, On transversaly holomorphic flows II, Inventiones Mathematicae 126 (1996), 281-286 Zbl0873.57022MR1411133
  11. A. Haefliger, Pseudo-groupes of locales isometries, Proceeding Vth Coll. in Diff. Geom 131 (1985), 174-197 Zbl0656.58042
  12. M. Kellum, Uniform lipschitz distortion, invariant measures and foliations, Geometric study of foliations (Tokyo, 1993) (1994), 313-326, World Sci. Publishing, River Edge, NJ. MR1363732
  13. S. Kobayashi, Transformation groups in differential geometry, (1972), Springer-Verlag, Berlin-Heidelberg-New York Zbl0246.53031MR355886
  14. M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom 6 (1971), 247-258 Zbl0236.53042MR303464
  15. R. Palais, On the existence of slices for actions of non-compact Lie groups, Annals of Mathematics 73 (1961), 295-323 Zbl0103.01802MR126506
  16. R. Sacksteder, Foliations and pseudogroups, American journal of Mathematics 87 (1967), 79-101 Zbl0136.20903MR174061
  17. É. Salem, Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d'isométries locales, Annales de l'institut Fourier 38 (1988), 185-200 Zbl0613.58041MR949015
  18. R. Schoen, On the conformal and CR automorphism groups, Geometric and functional analysis 5 (1995), 464-481 Zbl0835.53015MR1334876
  19. D. Trotsenko, Continuation from a domain and the approximation of space quasiconformal mappings with small distortion coefficient, Soviet mathematics, Doklady 27 (1983), 777-780 Zbl0541.30007
  20. J. Väisälä, Lectures on n -dimensional quasiconformal mappings, (1988), Springer-Verlag Zbl0221.30031MR454009
  21. I. Vaisman, Conformal foliations, Kodai Math. Journal 2 (1979), 26-37 Zbl0402.57014MR531785
  22. R.A. Wolak, Foliated G -structures and Riemannian foliations, Manuscripta Mathematica 66 (1989), 45-59 Zbl0686.57015MR1023550

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.