A dimension formula for Ekedahl-Oort strata

Ben Moonen[1]

  • [1] University of Amsterdam, Korteweg-de Vries Institute for Mathematics, Plantage Muidergracht 24, 1018 TV Amsterdam, Pays-Bas

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 3, page 666-698
  • ISSN: 0373-0956

Abstract

top
We study the Ekedahl-Oort stratification on moduli spaces of PEL type. The strata are indexed by the classes in a Weyl group modulo a subgroup, and each class has a distinguished representative of minimal length. The main result of this paper is that the dimension of a stratum equals the length of the corresponding Weyl group element. We also discuss some explicit examples.

How to cite

top

Moonen, Ben. "A dimension formula for Ekedahl-Oort strata." Annales de l’institut Fourier 54.3 (2004): 666-698. <http://eudml.org/doc/116122>.

@article{Moonen2004,
abstract = {We study the Ekedahl-Oort stratification on moduli spaces of PEL type. The strata are indexed by the classes in a Weyl group modulo a subgroup, and each class has a distinguished representative of minimal length. The main result of this paper is that the dimension of a stratum equals the length of the corresponding Weyl group element. We also discuss some explicit examples.},
affiliation = {University of Amsterdam, Korteweg-de Vries Institute for Mathematics, Plantage Muidergracht 24, 1018 TV Amsterdam, Pays-Bas},
author = {Moonen, Ben},
journal = {Annales de l’institut Fourier},
keywords = {abelian varieties; Shimura varieties; finite group schemes; Dieudonné theory},
language = {eng},
number = {3},
pages = {666-698},
publisher = {Association des Annales de l'Institut Fourier},
title = {A dimension formula for Ekedahl-Oort strata},
url = {http://eudml.org/doc/116122},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Moonen, Ben
TI - A dimension formula for Ekedahl-Oort strata
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 666
EP - 698
AB - We study the Ekedahl-Oort stratification on moduli spaces of PEL type. The strata are indexed by the classes in a Weyl group modulo a subgroup, and each class has a distinguished representative of minimal length. The main result of this paper is that the dimension of a stratum equals the length of the corresponding Weyl group element. We also discuss some explicit examples.
LA - eng
KW - abelian varieties; Shimura varieties; finite group schemes; Dieudonné theory
UR - http://eudml.org/doc/116122
ER -

References

top
  1. P. Berthelot, Théorie de Dieudonné sur un anneau de valuation parfait, Ann. Scient. Éc. Norm. Sup (4) 13 (1980), 225-268 Zbl0441.14012MR584086
  2. N. Bourbaki, Groupes et algèbres de Lie, Chap. 4-5-6 (1981), Masson, Paris Zbl0483.22001MR647314
  3. A.J. de Jong, F. Oort, Purity of the stratification by Newton polygons, J. A.M.S 13 (2000), 209-241 Zbl0954.14007MR1703336
  4. J.-M. Fontaine, Groupes p -divisibles sur les corps locaux, Astérisque (1977), 47-48 Zbl0377.14009MR498610
  5. E. Goren, F. Oort, Stratifications of Hilbert modular varieties, J. Alg. Geom 9 (2000), 111-154 Zbl0973.14010MR1713522
  6. L. Illusie, Déformations de groupes de Barsotti-Tate (d'après A. Grothendieck), Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell 127 (1985), 151-198 Zbl1182.14050
  7. R.E. Kottwitz, Isocrystals with additional structure, Compos. Math 56 (1985), 201-220 Zbl0597.20038MR809866
  8. H. Kraft, Kommutative algebraische p -Gruppen (mit Anwendungen auf p -divisible Gruppen und abelsche Varietäten), (Sept. 1975) 
  9. B.J.J. Moonen, Group schemes with additional structures and Weyl group cosets, Moduli of Abelian Varieties 195 (2001), 255-298, Birkhäuser, Basel Zbl1084.14523
  10. B.J.J. Moonen, Serre-Tate theory for moduli spaces of PEL type, Ann. Scient. Éc. Norm. Sup, 4e série 37 (2004), 223-269 Zbl1107.11028MR2061781
  11. B.J.J. Moonen, T. Wedhorn, Discrete invariants of varieties in positive characteristic, (June 2003) Zbl1084.14023
  12. F. Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. Math 152 (2000), 183-206 Zbl0991.14016MR1792294
  13. F. Oort, A stratificiation of a moduli space of abelian varieties, Moduli of Abelian Varieties 195 (2001), 345-416, Birkhäuser, Basel Zbl1052.14047
  14. F. Oort, Newton polygon strata in the moduli space of abelian varieties, Moduli of Abelian Varieties 195 (2001), 417-440, Birkhäuser, Basel Zbl1086.14037
  15. M. Rapoport, On the Newton stratification, Astérisque 290 (2003) Zbl1159.14304MR2074057
  16. M. Rapoport, M. Richartz, On the classification and specialization of F -isocrystals with additional structure, Compos. Math 103 (1996), 153-181 Zbl0874.14008MR1411570
  17. T. Wedhorn, The dimension of Oort strata of Shimura varieties of PEL-type, Moduli of Abelian Varieties 195 (2001), 441-471, Birkhäuser, Basel Zbl1052.14026
  18. R.E. Kottwitz, Points on some Shimura varieties over finite fields, J. A.M.S 5 (1992), 373-444 Zbl0796.14014MR1124982
  19. R.E. Kottwitz, Isocrystals with additional structure. II., Compos. Math. 109 (1997), 255-339 Zbl0966.20022MR1485921

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.