A dimension formula for Ekedahl-Oort strata
Ben Moonen[1]
- [1] University of Amsterdam, Korteweg-de Vries Institute for Mathematics, Plantage Muidergracht 24, 1018 TV Amsterdam, Pays-Bas
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 3, page 666-698
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMoonen, Ben. "A dimension formula for Ekedahl-Oort strata." Annales de l’institut Fourier 54.3 (2004): 666-698. <http://eudml.org/doc/116122>.
@article{Moonen2004,
abstract = {We study the Ekedahl-Oort stratification on moduli spaces of PEL type. The strata are
indexed by the classes in a Weyl group modulo a subgroup, and each class has a
distinguished representative of minimal length. The main result of this paper is that the
dimension of a stratum equals the length of the corresponding Weyl group element. We also
discuss some explicit examples.},
affiliation = {University of Amsterdam, Korteweg-de Vries Institute for Mathematics, Plantage Muidergracht 24, 1018 TV Amsterdam, Pays-Bas},
author = {Moonen, Ben},
journal = {Annales de l’institut Fourier},
keywords = {abelian varieties; Shimura varieties; finite group schemes; Dieudonné theory},
language = {eng},
number = {3},
pages = {666-698},
publisher = {Association des Annales de l'Institut Fourier},
title = {A dimension formula for Ekedahl-Oort strata},
url = {http://eudml.org/doc/116122},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Moonen, Ben
TI - A dimension formula for Ekedahl-Oort strata
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 666
EP - 698
AB - We study the Ekedahl-Oort stratification on moduli spaces of PEL type. The strata are
indexed by the classes in a Weyl group modulo a subgroup, and each class has a
distinguished representative of minimal length. The main result of this paper is that the
dimension of a stratum equals the length of the corresponding Weyl group element. We also
discuss some explicit examples.
LA - eng
KW - abelian varieties; Shimura varieties; finite group schemes; Dieudonné theory
UR - http://eudml.org/doc/116122
ER -
References
top- P. Berthelot, Théorie de Dieudonné sur un anneau de valuation parfait, Ann. Scient. Éc. Norm. Sup (4) 13 (1980), 225-268 Zbl0441.14012MR584086
- N. Bourbaki, Groupes et algèbres de Lie, Chap. 4-5-6 (1981), Masson, Paris Zbl0483.22001MR647314
- A.J. de Jong, F. Oort, Purity of the stratification by Newton polygons, J. A.M.S 13 (2000), 209-241 Zbl0954.14007MR1703336
- J.-M. Fontaine, Groupes -divisibles sur les corps locaux, Astérisque (1977), 47-48 Zbl0377.14009MR498610
- E. Goren, F. Oort, Stratifications of Hilbert modular varieties, J. Alg. Geom 9 (2000), 111-154 Zbl0973.14010MR1713522
- L. Illusie, Déformations de groupes de Barsotti-Tate (d'après A. Grothendieck), Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell 127 (1985), 151-198 Zbl1182.14050
- R.E. Kottwitz, Isocrystals with additional structure, Compos. Math 56 (1985), 201-220 Zbl0597.20038MR809866
- H. Kraft, Kommutative algebraische -Gruppen (mit Anwendungen auf -divisible Gruppen und abelsche Varietäten), (Sept. 1975)
- B.J.J. Moonen, Group schemes with additional structures and Weyl group cosets, Moduli of Abelian Varieties 195 (2001), 255-298, Birkhäuser, Basel Zbl1084.14523
- B.J.J. Moonen, Serre-Tate theory for moduli spaces of PEL type, Ann. Scient. Éc. Norm. Sup, 4e série 37 (2004), 223-269 Zbl1107.11028MR2061781
- B.J.J. Moonen, T. Wedhorn, Discrete invariants of varieties in positive characteristic, (June 2003) Zbl1084.14023
- F. Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. Math 152 (2000), 183-206 Zbl0991.14016MR1792294
- F. Oort, A stratificiation of a moduli space of abelian varieties, Moduli of Abelian Varieties 195 (2001), 345-416, Birkhäuser, Basel Zbl1052.14047
- F. Oort, Newton polygon strata in the moduli space of abelian varieties, Moduli of Abelian Varieties 195 (2001), 417-440, Birkhäuser, Basel Zbl1086.14037
- M. Rapoport, On the Newton stratification, Astérisque 290 (2003) Zbl1159.14304MR2074057
- M. Rapoport, M. Richartz, On the classification and specialization of -isocrystals with additional structure, Compos. Math 103 (1996), 153-181 Zbl0874.14008MR1411570
- T. Wedhorn, The dimension of Oort strata of Shimura varieties of PEL-type, Moduli of Abelian Varieties 195 (2001), 441-471, Birkhäuser, Basel Zbl1052.14026
- R.E. Kottwitz, Points on some Shimura varieties over finite fields, J. A.M.S 5 (1992), 373-444 Zbl0796.14014MR1124982
- R.E. Kottwitz, Isocrystals with additional structure. II., Compos. Math. 109 (1997), 255-339 Zbl0966.20022MR1485921
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.