Geometric conditions which imply compactness of the ¯ -Neumann operator

Emil Straube[1]

  • [1] Department of Mathematics, Texas A&M University, College Station, TX 77843, (USA)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 3, page 699-710
  • ISSN: 0373-0956

Abstract

top
For smooth bounded pseudoconvex domains in 2 , we provide geometric conditions on the boundary which imply compactness of the ¯ -Neumann operator. It is noteworthy that the proof of compactness does not proceed via verifying the known potential theoretic sufficient conditions.

How to cite

top

Straube, Emil. "Geometric conditions which imply compactness of the ${\overline{\partial }}$-Neumann operator." Annales de l’institut Fourier 54.3 (2004): 699-710. <http://eudml.org/doc/116123>.

@article{Straube2004,
abstract = {For smooth bounded pseudoconvex domains in $\{\mathbb \{C\}\}^\{2\}$, we provide geometric conditions on the boundary which imply compactness of the $\overline\{\partial \}$-Neumann operator. It is noteworthy that the proof of compactness does not proceed via verifying the known potential theoretic sufficient conditions.},
affiliation = {Department of Mathematics, Texas A&M University, College Station, TX 77843, (USA)},
author = {Straube, Emil},
journal = {Annales de l’institut Fourier},
keywords = {$\overline\{\partial \}$-Neumann operator; compactness; geometric conditions; -Neumann operator},
language = {eng},
number = {3},
pages = {699-710},
publisher = {Association des Annales de l'Institut Fourier},
title = {Geometric conditions which imply compactness of the $\{\overline\{\partial \}\}$-Neumann operator},
url = {http://eudml.org/doc/116123},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Straube, Emil
TI - Geometric conditions which imply compactness of the ${\overline{\partial }}$-Neumann operator
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 699
EP - 710
AB - For smooth bounded pseudoconvex domains in ${\mathbb {C}}^{2}$, we provide geometric conditions on the boundary which imply compactness of the $\overline{\partial }$-Neumann operator. It is noteworthy that the proof of compactness does not proceed via verifying the known potential theoretic sufficient conditions.
LA - eng
KW - $\overline{\partial }$-Neumann operator; compactness; geometric conditions; -Neumann operator
UR - http://eudml.org/doc/116123
ER -

References

top
  1. Harold P. Boas, Small sets of infinite type are benign for the ¯ -Neumann problem, Proceedings of the American Math. Soc 103 (1988), 569-578 Zbl0652.32016MR943086
  2. Harold P. Boas, Emil J. Straube, Global regularity of the ¯ -Neumann problem: a survey of the L ¨ 2 -Sobolev theory, Several Complex Variables 37 (1999), Cambridge University Press Zbl0967.32033
  3. David W. Catlin, Boundary behavior of holomorphic functions on weakly pseudoconvex domains, (1978) Zbl0484.32005
  4. David W. Catlin, Global regularity of the ¯ -Neumann problem, Complex Analysis of Several Variables 41 (1984), 39-49 Zbl0578.32031
  5. David W. Catlin, Subelliptic estimates for the ¯ -Neumann problem on pseudoconvex domains, Annals of Mathematics (2) 126 (1987), 131-191 Zbl0627.32013MR898054
  6. So-Chin Chen, Mei-Chi Shaw, Partial Differential Equations in Several Complex Variables, (2001), American Mathematical Society/International Press Zbl0963.32001MR1800297
  7. Michael Christ, Siqi Fu, Compactness in the ¯ -Neumann problem, magnetic Schrödinger operators, and the Aharonov–Bohm effect, (2003) Zbl1098.32020MR2166176
  8. John P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, (1993), CRC Press, Boca Raton, FL Zbl0854.32001MR1224231
  9. M. Derridj, Regularité pour ¯ dans quelques domaines faiblement pseudo-convexes, Journal of Differential Geometry 13 (1978), 559-576 Zbl0435.35057MR570218
  10. G.B. Folland, J.J. Kohn, The Neumann Problem for the Cauchy--Riemann Complex, 75 (1972), Princeton University Press Zbl0247.35093MR461588
  11. Siqi Fu, Emil J. Straube, Compactness of the ¯ -Neumann problem on convex domains, Journal of Functional Analysis 159 (1998), 629-641 Zbl0959.32042MR1659575
  12. Siqi Fu, Emil J. Straube, Compactness in the ¯ -Neumann problem, Complex Analysis and Geometry 9 (2001), 141-160, Math. Research Inst. Publ., Ohio State Univ. Zbl1011.32025
  13. Siqi Fu, Emil J. Straube, Semi-classical analysis of Schrödinger operators and compactness in the ¯ -Neumann problem, Journal of Math. Analysis and Applications 271 (2002), 267-282 Zbl1098.32021MR1923760
  14. Torsten Hefer, Ingo Lieb, On the compactness of the ¯ -Neumann operator, Ann. Fac. Sci. Toulouse Math (6) 9 (2000), 415-432 Zbl1017.32025MR1842025
  15. Peter Matheos, A Hartogs domain with no analytic discs in the boundary for which the ¯ -Neumann problem is not compact, (1997) 
  16. Jeffery D. McNeal, A sufficient condition for compactness of the ¯ -Neumann problem, Journal of Functional Analysis 195 (2002), 190-205 Zbl1023.32029MR1934357
  17. Nessim Sibony, Une classe de domaines pseudoconvexes, Duke Math. Journal 55 (1987), 299-319 Zbl0622.32016MR894582
  18. Emil J. Straube, Plurisubharmonic functions and subellipticity of the bad hbox -Neumann problem on non-smooth domains, Mathematical Research Letters 4 (1997), 459-467 Zbl0887.32005MR1470417
  19. William P. Ziemer, Weakly Differentiable Functions, 120 (1989), Springer-Verlag Zbl0692.46022MR1014685
  20. Siqi Fu, Emil J. Straube, Semi-classical analysis of Schrödinger operators and compactness in the ¯ -Neumann problem. (correction), J. Math. Anal. Appl. 280 (2003), 195-196 Zbl1098.32021MR1972203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.