Geometric conditions which imply compactness of the -Neumann operator
Emil Straube[1]
- [1] Department of Mathematics, Texas A&M University, College Station, TX 77843, (USA)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 3, page 699-710
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topStraube, Emil. "Geometric conditions which imply compactness of the ${\overline{\partial }}$-Neumann operator." Annales de l’institut Fourier 54.3 (2004): 699-710. <http://eudml.org/doc/116123>.
@article{Straube2004,
abstract = {For smooth bounded pseudoconvex domains in $\{\mathbb \{C\}\}^\{2\}$, we provide geometric
conditions on the boundary which imply compactness of the $\overline\{\partial \}$-Neumann
operator. It is noteworthy that the proof of compactness does not proceed via
verifying the known potential theoretic sufficient conditions.},
affiliation = {Department of Mathematics, Texas A&M University, College Station, TX 77843, (USA)},
author = {Straube, Emil},
journal = {Annales de l’institut Fourier},
keywords = {$\overline\{\partial \}$-Neumann operator; compactness; geometric conditions; -Neumann operator},
language = {eng},
number = {3},
pages = {699-710},
publisher = {Association des Annales de l'Institut Fourier},
title = {Geometric conditions which imply compactness of the $\{\overline\{\partial \}\}$-Neumann operator},
url = {http://eudml.org/doc/116123},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Straube, Emil
TI - Geometric conditions which imply compactness of the ${\overline{\partial }}$-Neumann operator
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 699
EP - 710
AB - For smooth bounded pseudoconvex domains in ${\mathbb {C}}^{2}$, we provide geometric
conditions on the boundary which imply compactness of the $\overline{\partial }$-Neumann
operator. It is noteworthy that the proof of compactness does not proceed via
verifying the known potential theoretic sufficient conditions.
LA - eng
KW - $\overline{\partial }$-Neumann operator; compactness; geometric conditions; -Neumann operator
UR - http://eudml.org/doc/116123
ER -
References
top- Harold P. Boas, Small sets of infinite type are benign for the -Neumann problem, Proceedings of the American Math. Soc 103 (1988), 569-578 Zbl0652.32016MR943086
- Harold P. Boas, Emil J. Straube, Global regularity of the -Neumann problem: a survey of the -Sobolev theory, Several Complex Variables 37 (1999), Cambridge University Press Zbl0967.32033
- David W. Catlin, Boundary behavior of holomorphic functions on weakly pseudoconvex domains, (1978) Zbl0484.32005
- David W. Catlin, Global regularity of the -Neumann problem, Complex Analysis of Several Variables 41 (1984), 39-49 Zbl0578.32031
- David W. Catlin, Subelliptic estimates for the -Neumann problem on pseudoconvex domains, Annals of Mathematics (2) 126 (1987), 131-191 Zbl0627.32013MR898054
- So-Chin Chen, Mei-Chi Shaw, Partial Differential Equations in Several Complex Variables, (2001), American Mathematical Society/International Press Zbl0963.32001MR1800297
- Michael Christ, Siqi Fu, Compactness in the -Neumann problem, magnetic Schrödinger operators, and the Aharonov–Bohm effect, (2003) Zbl1098.32020MR2166176
- John P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, (1993), CRC Press, Boca Raton, FL Zbl0854.32001MR1224231
- M. Derridj, Regularité pour dans quelques domaines faiblement pseudo-convexes, Journal of Differential Geometry 13 (1978), 559-576 Zbl0435.35057MR570218
- G.B. Folland, J.J. Kohn, The Neumann Problem for the Cauchy--Riemann Complex, 75 (1972), Princeton University Press Zbl0247.35093MR461588
- Siqi Fu, Emil J. Straube, Compactness of the -Neumann problem on convex domains, Journal of Functional Analysis 159 (1998), 629-641 Zbl0959.32042MR1659575
- Siqi Fu, Emil J. Straube, Compactness in the -Neumann problem, Complex Analysis and Geometry 9 (2001), 141-160, Math. Research Inst. Publ., Ohio State Univ. Zbl1011.32025
- Siqi Fu, Emil J. Straube, Semi-classical analysis of Schrödinger operators and compactness in the -Neumann problem, Journal of Math. Analysis and Applications 271 (2002), 267-282 Zbl1098.32021MR1923760
- Torsten Hefer, Ingo Lieb, On the compactness of the -Neumann operator, Ann. Fac. Sci. Toulouse Math (6) 9 (2000), 415-432 Zbl1017.32025MR1842025
- Peter Matheos, A Hartogs domain with no analytic discs in the boundary for which the -Neumann problem is not compact, (1997)
- Jeffery D. McNeal, A sufficient condition for compactness of the -Neumann problem, Journal of Functional Analysis 195 (2002), 190-205 Zbl1023.32029MR1934357
- Nessim Sibony, Une classe de domaines pseudoconvexes, Duke Math. Journal 55 (1987), 299-319 Zbl0622.32016MR894582
- Emil J. Straube, Plurisubharmonic functions and subellipticity of the -Neumann problem on non-smooth domains, Mathematical Research Letters 4 (1997), 459-467 Zbl0887.32005MR1470417
- William P. Ziemer, Weakly Differentiable Functions, 120 (1989), Springer-Verlag Zbl0692.46022MR1014685
- Siqi Fu, Emil J. Straube, Semi-classical analysis of Schrödinger operators and compactness in the -Neumann problem. (correction), J. Math. Anal. Appl. 280 (2003), 195-196 Zbl1098.32021MR1972203
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.