On the compactness of the -Neumann operator
Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)
- Volume: 9, Issue: 3, page 415-432
- ISSN: 0240-2963
Access Full Article
topHow to cite
topHefer, Torsten, and Lieb, Ingo. "On the compactness of the $\bar{\partial }$-Neumann operator." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.3 (2000): 415-432. <http://eudml.org/doc/73519>.
@article{Hefer2000,
author = {Hefer, Torsten, Lieb, Ingo},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {-convex intersections; compactness of the Neumann operator},
language = {eng},
number = {3},
pages = {415-432},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the compactness of the $\bar\{\partial \}$-Neumann operator},
url = {http://eudml.org/doc/73519},
volume = {9},
year = {2000},
}
TY - JOUR
AU - Hefer, Torsten
AU - Lieb, Ingo
TI - On the compactness of the $\bar{\partial }$-Neumann operator
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 3
SP - 415
EP - 432
LA - eng
KW - -convex intersections; compactness of the Neumann operator
UR - http://eudml.org/doc/73519
ER -
References
top- [1] Diederich ( K.), Fornæss ( J.E.). — Support Functions for Convex Domains of Finite Type, Math. Z.230, 145-164 (1999). Zbl1045.32016MR1671870
- [2] Diederich ( K.), Fischer ( B.), Fornæss ( J.E.). - Hölder Estimates on Convex Domains of Finite Type, Math. Z.232, 43-61 (1999). Zbl0932.32008MR1714279
- [3] Fischer ( B.). — Lp estimates on convex domains of finite type, to appear in Math. Z. (1999). Zbl0984.32022MR1815835
- [4] Folland ( G.), Kohn ( J.J.). — The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, Princeton, New Jersey, 1972. Zbl0247.35093MR461588
- [5] Fu ( S.), Straube ( E.J.). - Compactness of the ∂-Neumann problem on convex domains, J. Funct. Anal.159, 629-641 (1998). Zbl0959.32042MR1659575
- [6] Fu ( S.), Straube ( E.J.). - Compactness in the ∂-Neumann problem, Preprint (1999). Zbl1011.32025MR1912737
- [7] Hefer ( T.). — Hölder and Lp estimates for convex domains of finite type depending on Catlin's multitype, to appear in Math. Z. (2000). Zbl1048.32024MR1980628
- [8] Hefer ( T.), Ma ( L.), Vassiliadou ( S.K.). — Compactness of the Neumann operator on uniformly strongly q-convex domains, Preprint (1999).
- [9] Henkin ( G.M.), Iordan ( A.). — Compactness of the Neumann operator for hyper-convex domains with nonsmooth B-regular boundary, Math. Ann.307, 151-168 (1997). Zbl0869.32009MR1427681
- [10] Henkin ( G.M.), Iordan ( A.), Kohn ( J.J.). — Estimations sous-elliptique pour le problème ∂-Neumann dans un domaine strictement pseudoconvexe à frontière lisse par morceaux, C. R. Acad. Sci.Paris Ser. I323, 17-22 (1996). Zbl0861.35066MR1401622
- [11] Ho ( L.-H.). — ∂-problem on weakly q-convex domains, Math. Ann.290, 3-18 (1991). Zbl0714.32006MR1107660
- [12] Hörmander ( L.). — L2-estimates and existence theorems for the ∂-operator, Acta Math.113, 89-152 (1965). Zbl0158.11002MR179443
- [13] Kerzman ( N.). — Hölder and Lp estimates for solutions to the ∂-equation in strongly pseudoconvex domains, Comm. Pure Appl. Math.24(3), 301-379 (1971). Zbl0217.13202MR281944
- [14] Krantz ( S.G.). — Compactness of the ∂-Neumann operator, Proc. A. M. S.103(4), 1136-1138 (1988). Zbl0736.35071MR954995
- [15] Ma ( L.). — Hölder and Lp estimates for the ∂-equation on non-smooth strictly q-convex domains, Manuscr. Math.74, 177-193 (1992). Zbl0754.35092MR1147561
- [16] Ma ( L.), Vassiliadou ( S.K.). — Lp estimates for the ∂-equation on q-convex intersections in Cn, Preprint (1999).
- [17] Michel ( J.). — Der Neumannoperator auf streng pseudokonkaven Gebieten und andere Anwendungen der Integralformelmethode, Bonner Mathematische Schriften238 (1992). Zbl0860.32008MR1237821
- [18] Michel ( J.), Shaw ( M.-C.). — Subelliptic estimates for the ∂-Neumann operator on piecewise smooth strictly pseudoconvex domains, Duke Math. J.93, 115-128 (1998). Zbl0953.32027MR1620087
- [19] Nieten ( M.). - Kompaktheit des ∂-Nenmannoperators auf Durchschnitten q-konvexer Gebiete, Diplomarbeit, Universität Bonn, 2000.
- [20] Ohsawa ( T.), Takegoshi ( K.). - On the extension of L2 holomorphic functions, Math. Z.195(2), 197-204 (1987). Zbl0625.32011MR892051
- [21] Range ( R.M.). — The ∂-Neumann operator on the unit ball in Cn, Math. Ann.266 (1984), 449-456. Zbl0513.32008MR735527
- [22] Range ( R.M.). — Holomorphic Functions and Integral Representations in Several Complex Variables, Second printing, Springer-Verlag, New York, 1998. MR847923
- [23] Rudin ( W.). - Functional Analysis, Second Edition, McGraw-Hill, New York, 1991. Zbl0867.46001MR1157815
- [24] Schmalz ( G.). — Solution of the ∂-equation with uniform estimates on strictly q-convex domains with non-smooth boundary, Math. Z.202, 409-430 (1989). Zbl0662.32017MR1017581
- [25] Vassiliadou ( S.K.). — The ∂-Neumann operator on certain piecewise smooth domains in Cn, Preprint (1999)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.