On the compactness of the ¯ -Neumann operator

Torsten Hefer; Ingo Lieb

Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)

  • Volume: 9, Issue: 3, page 415-432
  • ISSN: 0240-2963

How to cite

top

Hefer, Torsten, and Lieb, Ingo. "On the compactness of the $\bar{\partial }$-Neumann operator." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.3 (2000): 415-432. <http://eudml.org/doc/73519>.

@article{Hefer2000,
author = {Hefer, Torsten, Lieb, Ingo},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {-convex intersections; compactness of the Neumann operator},
language = {eng},
number = {3},
pages = {415-432},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the compactness of the $\bar\{\partial \}$-Neumann operator},
url = {http://eudml.org/doc/73519},
volume = {9},
year = {2000},
}

TY - JOUR
AU - Hefer, Torsten
AU - Lieb, Ingo
TI - On the compactness of the $\bar{\partial }$-Neumann operator
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 3
SP - 415
EP - 432
LA - eng
KW - -convex intersections; compactness of the Neumann operator
UR - http://eudml.org/doc/73519
ER -

References

top
  1. [1] Diederich ( K.), Fornæss ( J.E.). — Support Functions for Convex Domains of Finite Type, Math. Z.230, 145-164 (1999). Zbl1045.32016MR1671870
  2. [2] Diederich ( K.), Fischer ( B.), Fornæss ( J.E.). - Hölder Estimates on Convex Domains of Finite Type, Math. Z.232, 43-61 (1999). Zbl0932.32008MR1714279
  3. [3] Fischer ( B.). — Lp estimates on convex domains of finite type, to appear in Math. Z. (1999). Zbl0984.32022MR1815835
  4. [4] Folland ( G.), Kohn ( J.J.). — The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, Princeton, New Jersey, 1972. Zbl0247.35093MR461588
  5. [5] Fu ( S.), Straube ( E.J.). - Compactness of the ∂-Neumann problem on convex domains, J. Funct. Anal.159, 629-641 (1998). Zbl0959.32042MR1659575
  6. [6] Fu ( S.), Straube ( E.J.). - Compactness in the ∂-Neumann problem, Preprint (1999). Zbl1011.32025MR1912737
  7. [7] Hefer ( T.). — Hölder and Lp estimates for convex domains of finite type depending on Catlin's multitype, to appear in Math. Z. (2000). Zbl1048.32024MR1980628
  8. [8] Hefer ( T.), Ma ( L.), Vassiliadou ( S.K.). — Compactness of the Neumann operator on uniformly strongly q-convex domains, Preprint (1999). 
  9. [9] Henkin ( G.M.), Iordan ( A.). — Compactness of the Neumann operator for hyper-convex domains with nonsmooth B-regular boundary, Math. Ann.307, 151-168 (1997). Zbl0869.32009MR1427681
  10. [10] Henkin ( G.M.), Iordan ( A.), Kohn ( J.J.). — Estimations sous-elliptique pour le problème ∂-Neumann dans un domaine strictement pseudoconvexe à frontière lisse par morceaux, C. R. Acad. Sci.Paris Ser. I323, 17-22 (1996). Zbl0861.35066MR1401622
  11. [11] Ho ( L.-H.). — ∂-problem on weakly q-convex domains, Math. Ann.290, 3-18 (1991). Zbl0714.32006MR1107660
  12. [12] Hörmander ( L.). — L2-estimates and existence theorems for the ∂-operator, Acta Math.113, 89-152 (1965). Zbl0158.11002MR179443
  13. [13] Kerzman ( N.). — Hölder and Lp estimates for solutions to the ∂-equation in strongly pseudoconvex domains, Comm. Pure Appl. Math.24(3), 301-379 (1971). Zbl0217.13202MR281944
  14. [14] Krantz ( S.G.). — Compactness of the ∂-Neumann operator, Proc. A. M. S.103(4), 1136-1138 (1988). Zbl0736.35071MR954995
  15. [15] Ma ( L.). — Hölder and Lp estimates for the ∂-equation on non-smooth strictly q-convex domains, Manuscr. Math.74, 177-193 (1992). Zbl0754.35092MR1147561
  16. [16] Ma ( L.), Vassiliadou ( S.K.). — Lp estimates for the ∂-equation on q-convex intersections in Cn, Preprint (1999). 
  17. [17] Michel ( J.). — Der Neumannoperator auf streng pseudokonkaven Gebieten und andere Anwendungen der Integralformelmethode, Bonner Mathematische Schriften238 (1992). Zbl0860.32008MR1237821
  18. [18] Michel ( J.), Shaw ( M.-C.). — Subelliptic estimates for the ∂-Neumann operator on piecewise smooth strictly pseudoconvex domains, Duke Math. J.93, 115-128 (1998). Zbl0953.32027MR1620087
  19. [19] Nieten ( M.). - Kompaktheit des ∂-Nenmannoperators auf Durchschnitten q-konvexer Gebiete, Diplomarbeit, Universität Bonn, 2000. 
  20. [20] Ohsawa ( T.), Takegoshi ( K.). - On the extension of L2 holomorphic functions, Math. Z.195(2), 197-204 (1987). Zbl0625.32011MR892051
  21. [21] Range ( R.M.). — The ∂-Neumann operator on the unit ball in Cn, Math. Ann.266 (1984), 449-456. Zbl0513.32008MR735527
  22. [22] Range ( R.M.). — Holomorphic Functions and Integral Representations in Several Complex Variables, Second printing, Springer-Verlag, New York, 1998. MR847923
  23. [23] Rudin ( W.). - Functional Analysis, Second Edition, McGraw-Hill, New York, 1991. Zbl0867.46001MR1157815
  24. [24] Schmalz ( G.). — Solution of the ∂-equation with uniform estimates on strictly q-convex domains with non-smooth boundary, Math. Z.202, 409-430 (1989). Zbl0662.32017MR1017581
  25. [25] Vassiliadou ( S.K.). — The ∂-Neumann operator on certain piecewise smooth domains in Cn, Preprint (1999) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.