Local well-posedness for the incompressible Euler equations in the critical Besov spaces
Yong Zhou[1]
- [1] Chinese University of Hong Kong, Institute of Mathematical Sciences and Department of Mathematics, Shatin, N.T. (Hong Kong), Xiamen University, Xiamen, Fujian (Chine)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 3, page 773-786
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- J.-T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys 94 (1984), 61-66 Zbl0573.76029MR763762
- J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Ecole Norm. Sup. (4) 14 (1981), 209-246 Zbl0495.35024MR631751
- D. Chae, On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces., Comm. Pure Appl. Math 55 (2002), 654-678 Zbl1025.35016MR1880646
- J.-Y. Chemin, Régularité de la trajectoire des particules d'un fluide parfait incompressible remplissant l'espace, J. Math. Pures Appl. (9) 71 (1992), 407-417 Zbl0833.35112MR1191582
- J.-Y. Chemin, Perfect incompressible fluids, 14 (1998), The Clarendon Press, Oxford University Press, New York Zbl0927.76002MR1688875
- R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math 141 (2000), 579-614 Zbl0958.35100MR1779621
- R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations 26 (2001), 1183-1233 Zbl1007.35071MR1855277
- M. Frazier, B. Jawerth, G. Weiss, Littlewood-Paley theory and the study of function spaces, 79 (1991), American Mathematical Society, Providence, RI Zbl0757.42006
- T. Kato, Nonstationary flows of viscous and ideal fluids in , J. Functional Analysis 9 (1972), 296-305 Zbl0229.76018MR481652
- T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math 41 (1988), 891-907 Zbl0671.35066MR951744
- H. Kozono, Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys. 214 (2000), 191-200 Zbl0985.46015MR1794270
- H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z 242 (2002), 251-278 Zbl1055.35087MR1980623
- A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Frontiers of the mathematical sciences (New York, 1985) 39, suppl. (1986), S186-S220 Zbl0595.76021
- T. Runst, W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations., 3 (1996), Walter de Gruyter & Co., Berlin Zbl0873.35001MR1419319
- E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Monographs in Harmonic Analysis, III 43 (1993), Princeton University Press, Princeton, NJ Zbl0821.42001
- H. Triebel, Theory of function spaces. II., 84 (1992), Birkhäuser Verlag, Basel Zbl0763.46025
- M. Vishik, Hydrodynamics in Besov spaces., Arch. Ration. Mech. Anal 145 (1998), 197-214 Zbl0926.35123MR1664597
- M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Ecole Norm. Sup. (4) 32 (1999), 769-812 Zbl0938.35128MR1717576