Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type

Misha Vishik

Annales scientifiques de l'École Normale Supérieure (1999)

  • Volume: 32, Issue: 6, page 769-812
  • ISSN: 0012-9593

How to cite


Vishik, Misha. "Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type." Annales scientifiques de l'École Normale Supérieure 32.6 (1999): 769-812. <>.

author = {Vishik, Misha},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {uniqueness; Euler equations; wavelet decomposition; existence},
language = {eng},
number = {6},
pages = {769-812},
publisher = {Elsevier},
title = {Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type},
url = {},
volume = {32},
year = {1999},

AU - Vishik, Misha
TI - Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 6
SP - 769
EP - 812
LA - eng
KW - uniqueness; Euler equations; wavelet decomposition; existence
UR -
ER -


  1. [BC] H. BAHOURI and J.-Y. CHEMIN, Equations de transport relatives à des champs de vecteurs on-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal., Vol. 127, 1994, pp. 159-181. Zbl0821.76012MR95g:35164
  2. [BKM] T. BEALE, T. KATO and A. MAJDA, Remarks on the breakdown of smooth for the 3-D Euler equations, Comm. Math. Phys., Vol. 94, 1984, pp. 61-66. Zbl0573.76029MR85j:35154
  3. [B] J.-M. BONY, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. de l'Ecole Norm. Sup., Vol. 14, 1981, pp. 209-246. Zbl0495.35024MR84h:35177
  4. [BB] J. BOURGUIGNON and H. BREZIS, Remarks on the Euler equation, J. Funct. Anal., Vol. 15, 1974, no. 4, pp. 341-363. Zbl0279.58005MR49 #9452
  5. [C] D. CHAE, Weak solutions of 2D Euler equations with initial vorticity in L log L(R2), J. Diff. Equat., Vol. 103, 1993, pp. 323-337. Zbl0854.35082MR94m:35233
  6. [C1] J.-Y. CHEMIN, Fluides parfaits incompressibles, Astérisque no. 230, 1995. Zbl0829.76003MR97d:76007
  7. [C2] J.-Y. CHEMIN, Persistance de structures géométriques dans les fluides incompressibles bidimensionnelles, Ann. Ecole Norm. Sup., Vol. 26, 1993, pp. 1-26. Zbl0779.76011MR94j:35141
  8. [CL] J.-Y. CHEMIN and N. LERNER, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes, J. Diff. Equat., Vol. 121, 1995, pp. 314-328. Zbl0878.35089MR96h:35153
  9. [D] I. DAUBECHIES, Ten lectures on wavelets, SIAM, 1992. Zbl0776.42018MR93e:42045
  10. [De] J.-M. DELORT, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., Vol. 4, 1991, pp. 553-586. Zbl0780.35073MR92f:76019
  11. [D1] B. DESJARDINS, A few remarks on ordinary differential equations, Commun. in PDE's, Vol. 21, 1966, pp. 1667-1703. Zbl0899.35022MR97j:34005
  12. [D2] B. DESJARDINS, Linear transport equations with initial values in Sobolev spaces and application to Navier-Stokes equations, Diff. And Int. Equat., Vol. 10, 1997, no. 3, pp. 577-586. Zbl0902.76028MR2000k:35234
  13. [DL] R. DI PERNA and P.-L. LIONS, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Vol. 98, 1989, no. 3, pp. 511-549. Zbl0696.34049MR90j:34004
  14. [DM] R. DI PERNA and A. MAJDA, Concentrations in regularizations for 2-D incompressible flows, Comm. Pure Appl. Math., Vol. 40, 1987, pp. 301-345. Zbl0850.76730MR88e:35149
  15. [EM] D. EBIN and J. MARSDEN, Groups of diffeomorphismes and the motion of an incompressible fluid, Ann. of Math., Vol. 92, 1970, pp. 102-163. Zbl0211.57401MR42 #6865
  16. [EVM] L.C. EVANS and S. MÚLLER, Hardy spaces and the two-dimensional Euler equations with non-negative vorticity, J. Amer. Math. Soc., Vol. 7, 1994, pp. 199-220. Zbl0802.35120MR94h:35205
  17. [FJ] M. FRAZIER and B. JAWERTH, Decomposition of Besov spaces, Indiana Math. J., Vol. 34, 1985, pp. 777-799. Zbl0551.46018MR87h:46083
  18. [Ge] P. GÉRARD, Résultats récents sur les fluides parfaits incompressibles bidimensionnels [d'après J.-Y. Chemin et J.-M. Delort], Seminar Bourbaki, 1991/1992, no. 757, Astérisque, Vol. 206, 1992, pp. 411-444. Zbl1154.76321
  19. [G] N. GUNTHER, On the motion of fluid in a moving container, Izvestia Akad. Nauk USSR, Ser. Fiz.-Math., Vol. 20, 1927, pp. 1323-1348, 1503-1532 ; Vol. 21, 1927, pp. 521-526, 735-756 ; Vol. 22, 1928, pp. 9-30. 
  20. [KP] T. KATO and G. PONCE, Well posedness of the Euler and Navier-Stokes equations in Lebesgue spaces Lsp(R2), Revista Ibero-Americana, Vol. 2, 1986, pp. 73-88. Zbl0615.35078MR88a:35189
  21. [LM] P. LEMARIÉ and Y. MEYER, Ondelettes et bases hilbertiennes, Revista Ibero-Americana, Vol. 2, 1986, pp. 1-18. Zbl0657.42028MR864650
  22. [L] L. LICHTENSTEIN, Über einige Existenzprobleme der Hydrodynamik homogenerun-zusammendrück barer, reibungsloser Flüβigkeiten und die Helmgoltzschen Wirbelsatze0, Math. Z., Vol. 23, 1925, pp. 89-154 ; Vol. 26, 1927, pp. 196-323 ; Vol. 28, 1928, pp. 387-415 ; Vol. 32, 1930, pp. 608-725. JFM51.0658.01
  23. [M] A. MAJDA, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J., Vol. 42, 1993, pp. 921-939. Zbl0791.76015MR94k:35236
  24. [M1] Y. MEYER, Remarques sur un théorème de J.-M. Bony, Suppl. Rend. Circ. Mat. Palermo, Vol. 1, 1981, pp. 1-20. Zbl0473.35021MR83b:35169
  25. [M2] Y. MEYER, Wavelets and operators, Cambridge University Press, 1992. Zbl0776.42019MR94f:42001
  26. [P] J. PEETRE, New Thoughts on Besov Spaces, Duke Univ. Press, 1976. Zbl0356.46038MR57 #1108
  27. [S] V. SCHEFFER, An inviscid flow with compact support in space-time, J. of Geom. Anal., Vol. 3, 1993, no. 4, pp. 343-401. Zbl0836.76017MR94h:35215
  28. [Sh] A. SHNIRELMAN, On the non-uniqueness of weak solution of the Euler equations, Comm. Pure Appl. Math., Vol. 50, 1997, no. 12, pp. 1261-1286. Zbl0909.35109MR98j:35149
  29. [T] R. TEMAM, Local existence of C∞ solutions of the Euler equations of incompressible perfect fluid, Lecture Notes in Math., Vol. 565, 1976, pp. 184-194. Zbl0355.76017MR57 #6902
  30. [Tr] H. TRIEBEL, Theory of Function Spaces 2, Birkhauser, 1992. MR93f:46029
  31. [Y1] V. YUDOVICH, Nonstationary flow of an ideal incompressible liquid, Zh. Vych. Mat., Vol. 3, 1963, pp. 1032-1066. Zbl0129.19402
  32. [Y2] V. YUDOVICH, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Mathematical Research Letters, Vol. 2, 1995, pp. 27-38. Zbl0841.35092MR95k:35168
  33. [Y3] V. YUDOVICH, Some bounds of solutions of elliptic equations, Mat. Sbornik, Vol. 59, 1962, pp. 229-244. Zbl0175.11604MR26 #6558
  34. [V] M. VISHIK, Hydrodynamics in Besov spaces, Arch. for Rat. Mech. and Anal., Vol. 145, 1998, pp. 197-214. Zbl0926.35123MR2000a:35201
  35. [W] W. WOLIBNER, Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long, Math. Z., Vol. 37, 1933, pp. 698-627. Zbl0008.06901JFM59.1447.02

Citations in EuDML Documents

  1. Yong Zhou, Local well-posedness for the incompressible Euler equations in the critical Besov spaces
  2. Milton C. Lopes Filho, Helena J. Nussenzveig Lopes, Eitan Tadmor, Approximate solutions of the incompressible Euler equations with no concentrations
  3. Taoufik Hmidi, Estimations uniformes en viscosité évanescente
  4. Thierry Gallay, Interaction des tourbillons dans les écoulements plans faiblement visqueux
  5. Milton C. Lopes Filho, John Lowengrub, Helena J. Nussenzveig Lopes, Yuxi Zheng, Numerical evidence of nonuniqueness in the evolution of vortex sheets
  6. Marius Paicu, Fluides incompressibles horizontalement visqueux
  7. Jean-Yves Chemin, Ping Zhang, The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations
  8. Isabelle Gallagher, Dragos Iftimie, Fabrice Planchon, Asymptotics and stability for global solutions to the Navier-Stokes equations

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.