Homomorphic extensions of Johnson homomorphisms via Fox calculus

Bernard Perron[1]

  • [1] Université de Bourgogne, Institut de mathématiques de Bourgogne, UFR sciences et techniques, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 4, page 1073-1106
  • ISSN: 0373-0956

Abstract

top
Using Fox differential calculus, for any positive integer k , we construct a map on the mapping class group g , 1 of a surface of genus g with one boundary component, such that, when restricted to an appropriate subgroup, it coincides with the k + 1 t h Johnson-Morita homomorphism. This allows us to construct very easily a homomorphic extension to g , 1 of the second and third Johnson-Morita homomorphisms.

How to cite

top

Perron, Bernard. "Homomorphic extensions of Johnson homomorphisms via Fox calculus." Annales de l’institut Fourier 54.4 (2004): 1073-1106. <http://eudml.org/doc/116131>.

@article{Perron2004,
abstract = {Using Fox differential calculus, for any positive integer $k$, we construct a map on the mapping class group $\{\mathcal \{M\}\}_\{g,1\}$ of a surface of genus $g$ with one boundary component, such that, when restricted to an appropriate subgroup, it coincides with the $ k+1th$ Johnson-Morita homomorphism. This allows us to construct very easily a homomorphic extension to $\{\mathcal \{M\}\}_\{g,1\}$ of the second and third Johnson-Morita homomorphisms.},
affiliation = {Université de Bourgogne, Institut de mathématiques de Bourgogne, UFR sciences et techniques, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)},
author = {Perron, Bernard},
journal = {Annales de l’institut Fourier},
keywords = {mapping class group of a surface; Johnson-Morita homomorphisms; Fox differential calculus},
language = {eng},
number = {4},
pages = {1073-1106},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homomorphic extensions of Johnson homomorphisms via Fox calculus},
url = {http://eudml.org/doc/116131},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Perron, Bernard
TI - Homomorphic extensions of Johnson homomorphisms via Fox calculus
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 1073
EP - 1106
AB - Using Fox differential calculus, for any positive integer $k$, we construct a map on the mapping class group ${\mathcal {M}}_{g,1}$ of a surface of genus $g$ with one boundary component, such that, when restricted to an appropriate subgroup, it coincides with the $ k+1th$ Johnson-Morita homomorphism. This allows us to construct very easily a homomorphic extension to ${\mathcal {M}}_{g,1}$ of the second and third Johnson-Morita homomorphisms.
LA - eng
KW - mapping class group of a surface; Johnson-Morita homomorphisms; Fox differential calculus
UR - http://eudml.org/doc/116131
ER -

References

top
  1. J. Birman, Braids, links and mapping class groups, 82 (1974), Princeton Univ. Press, Princeton Zbl0305.57013MR375281
  2. K. Brown, Cohomology of groups, 87 (1982), Springer-Verlag Zbl0584.20036MR672956
  3. A. Casson, Lectures at MSRI (1985) 
  4. R. Fox, Free differential calculus I, Annals of Math. 57 (1953), 547-560 Zbl0050.25602MR53938
  5. S. Humphries, Generators of the mapping class group, 722 (1979), 44-47, Springer Zbl0732.57004
  6. D. Johnson, An abelian quotient of the mapping class group g , Math. Ann. 249 (1980), 225-242 Zbl0409.57009MR579103
  7. D. Johnson, The structure of the Torelli group I, Annals of Math 118 (1983), 423-442 Zbl0549.57006MR727699
  8. D. Johnson, The structure of the Torelli group II, Topology 24 (1985), 113-126 Zbl0571.57009MR793178
  9. A. Karass, W. Magnus, D. Solitar, Combinatorial group theory, 13 (1966), Interscience Publ., New York Zbl0138.25604
  10. S. Morita, Casson's invariant for homology 3-spheres and characteristic classes of surface bundles I, Topology 28 (1989), 305-323 Zbl0684.57008MR1014464
  11. S. Morita, On the structure of the Torelli group and the Casson invariant, Topology 30 (1991), 603-621 Zbl0747.57010MR1133875
  12. S. Morita, The extension of Johnson's homomorphism from the Torelli group to the mapping class group, Invent. Math. 111 (1993), 197-224 Zbl0787.57008MR1193604
  13. S. Morita, The structure of the mapping class group and characteristic classes of surface bundles, Mapping class groups and Moduli spaces of Riemann surfaces 150 (1993), 303-315 Zbl0791.57018
  14. S. Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math J. 70 (1993), 699-726 Zbl0801.57011MR1224104
  15. B. Perron, Mapping class group and the Casson invariant, Ann. Inst. Fourier 54 (2004), 1107-1138 Zbl1110.57011MR2111023
  16. B. Perron, J.-P. Vannier, Groupe de monodromie géométrique des singularités simples, Math. Ann 306 (1996), 231-245 Zbl0863.32013MR1411346
  17. J. Powell, Two theorems on the mapping class group of surfaces, Proc. AMS 68 (1978), 347-350 Zbl0391.57009MR494115
  18. N. Saveliev, Lectures on the topology of 3-manifolds. An introduction to the Casson Invariant, (1999), Berlin, New York Zbl0932.57001MR1712769
  19. S. Suzuky, On homeomorphisms of a 3-dimensional handlebody, Can. J. Math. 29 (1977), 111-124 Zbl0339.57001MR433433

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.