Homomorphic extensions of Johnson homomorphisms via Fox calculus
- [1] Université de Bourgogne, Institut de mathématiques de Bourgogne, UFR sciences et techniques, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 4, page 1073-1106
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPerron, Bernard. "Homomorphic extensions of Johnson homomorphisms via Fox calculus." Annales de l’institut Fourier 54.4 (2004): 1073-1106. <http://eudml.org/doc/116131>.
@article{Perron2004,
abstract = {Using Fox differential calculus, for any positive integer $k$, we construct a map on the
mapping class group $\{\mathcal \{M\}\}_\{g,1\}$ of a surface of genus $g$ with one boundary
component, such that, when restricted to an appropriate subgroup, it coincides with the $
k+1th$ Johnson-Morita homomorphism. This allows us to construct very easily a homomorphic
extension to $\{\mathcal \{M\}\}_\{g,1\}$ of the second and third Johnson-Morita homomorphisms.},
affiliation = {Université de Bourgogne, Institut de mathématiques de Bourgogne, UFR sciences et techniques, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)},
author = {Perron, Bernard},
journal = {Annales de l’institut Fourier},
keywords = {mapping class group of a surface; Johnson-Morita homomorphisms; Fox differential calculus},
language = {eng},
number = {4},
pages = {1073-1106},
publisher = {Association des Annales de l'Institut Fourier},
title = {Homomorphic extensions of Johnson homomorphisms via Fox calculus},
url = {http://eudml.org/doc/116131},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Perron, Bernard
TI - Homomorphic extensions of Johnson homomorphisms via Fox calculus
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 1073
EP - 1106
AB - Using Fox differential calculus, for any positive integer $k$, we construct a map on the
mapping class group ${\mathcal {M}}_{g,1}$ of a surface of genus $g$ with one boundary
component, such that, when restricted to an appropriate subgroup, it coincides with the $
k+1th$ Johnson-Morita homomorphism. This allows us to construct very easily a homomorphic
extension to ${\mathcal {M}}_{g,1}$ of the second and third Johnson-Morita homomorphisms.
LA - eng
KW - mapping class group of a surface; Johnson-Morita homomorphisms; Fox differential calculus
UR - http://eudml.org/doc/116131
ER -
References
top- J. Birman, Braids, links and mapping class groups, 82 (1974), Princeton Univ. Press, Princeton Zbl0305.57013MR375281
- K. Brown, Cohomology of groups, 87 (1982), Springer-Verlag Zbl0584.20036MR672956
- A. Casson, Lectures at MSRI (1985)
- R. Fox, Free differential calculus I, Annals of Math. 57 (1953), 547-560 Zbl0050.25602MR53938
- S. Humphries, Generators of the mapping class group, 722 (1979), 44-47, Springer Zbl0732.57004
- D. Johnson, An abelian quotient of the mapping class group , Math. Ann. 249 (1980), 225-242 Zbl0409.57009MR579103
- D. Johnson, The structure of the Torelli group I, Annals of Math 118 (1983), 423-442 Zbl0549.57006MR727699
- D. Johnson, The structure of the Torelli group II, Topology 24 (1985), 113-126 Zbl0571.57009MR793178
- A. Karass, W. Magnus, D. Solitar, Combinatorial group theory, 13 (1966), Interscience Publ., New York Zbl0138.25604
- S. Morita, Casson's invariant for homology 3-spheres and characteristic classes of surface bundles I, Topology 28 (1989), 305-323 Zbl0684.57008MR1014464
- S. Morita, On the structure of the Torelli group and the Casson invariant, Topology 30 (1991), 603-621 Zbl0747.57010MR1133875
- S. Morita, The extension of Johnson's homomorphism from the Torelli group to the mapping class group, Invent. Math. 111 (1993), 197-224 Zbl0787.57008MR1193604
- S. Morita, The structure of the mapping class group and characteristic classes of surface bundles, Mapping class groups and Moduli spaces of Riemann surfaces 150 (1993), 303-315 Zbl0791.57018
- S. Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math J. 70 (1993), 699-726 Zbl0801.57011MR1224104
- B. Perron, Mapping class group and the Casson invariant, Ann. Inst. Fourier 54 (2004), 1107-1138 Zbl1110.57011MR2111023
- B. Perron, J.-P. Vannier, Groupe de monodromie géométrique des singularités simples, Math. Ann 306 (1996), 231-245 Zbl0863.32013MR1411346
- J. Powell, Two theorems on the mapping class group of surfaces, Proc. AMS 68 (1978), 347-350 Zbl0391.57009MR494115
- N. Saveliev, Lectures on the topology of 3-manifolds. An introduction to the Casson Invariant, (1999), Berlin, New York Zbl0932.57001MR1712769
- S. Suzuky, On homeomorphisms of a 3-dimensional handlebody, Can. J. Math. 29 (1977), 111-124 Zbl0339.57001MR433433
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.