A complete description of normal surfaces for infinite series of 3-manifolds.
Let be the Dehn twist about a circle a on an orientable surface. It is well known that for each circle b and an integer n, , where I(·,·) is the geometric intersection number. We prove a similar formula for circles on nonorientable surfaces. As a corollary we prove some algebraic properties of twists on nonorientable surfaces. We also prove that if ℳ(N) is the mapping class group of a nonorientable surface N, then up to a finite number of exceptions, the centraliser of the subgroup of ℳ(N) generated...
Those maps of a closed surface to the three-dimensional torus that are homotopic to embeddings are characterized. Particular attention is paid to the more involved case when the surface is nonorientable.
The states of the title are a set of knot types which suffice to create a generating set for the Kauffman bracket skein module of a manifold. The minimum number of states is a topological invariant, but quite difficult to compute. In this paper we show that a set of states determines a generating set for the ring of characters of the fundamental group, which in turn provides estimates of the invariant.
Nous donnons des conditions nécessaires et suffisantes pour qu’une variété de dimension 3 se réalise comme bord d’une famille dégénérée de courbes complexes, et pour qu’un entrelacs dans une 3-variété se réalise comme bord d’un germe de fonction analytique en un point d’une surface complexe normale. Ces résultats s’appuient sur une étude des objets topologiques fournis par de telles fonctions holomorphes : soit une variété de Waldhausen et soit une union finie, éventuellement vide, de fibres...