Numerically trivial foliations

Thomas Eckl[1]

  • [1] Universität Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln (Allemagne)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 4, page 887-938
  • ISSN: 0373-0956

Abstract

top
Given a positive singular hermitian metric of a pseudoeffective line bundle on a complex Kähler manifold, a singular foliation is constructed satisfying certain analytic analogues of numerical conditions. This foliation refines Tsuji’s numerically trivial fibration and the Iitaka fibration. Using almost positive singular hermitian metrics with analytic singularities on a pseudo-effective line bundle , a foliation is constructed refining the nef fibration. If the singularities of the foliation are isolated points, the codimension of the leaves is an upper bound to the numerical dimension of the line bundle, and the foliation can be interpreted as a geometric reason for the deviation of nef and Kodaira-Iitaka dimensions. Several surface examples are studied in more details, 2 blown up in 9 points giving a counter example to equality of numerical dimension and codimension of the leaves.

How to cite

top

Eckl, Thomas. "Numerically trivial foliations." Annales de l’institut Fourier 54.4 (2004): 887-938. <http://eudml.org/doc/116137>.

@article{Eckl2004,
abstract = {Given a positive singular hermitian metric of a pseudoeffective line bundle on a complex Kähler manifold, a singular foliation is constructed satisfying certain analytic analogues of numerical conditions. This foliation refines Tsuji’s numerically trivial fibration and the Iitaka fibration. Using almost positive singular hermitian metrics with analytic singularities on a pseudo-effective line bundle , a foliation is constructed refining the nef fibration. If the singularities of the foliation are isolated points, the codimension of the leaves is an upper bound to the numerical dimension of the line bundle, and the foliation can be interpreted as a geometric reason for the deviation of nef and Kodaira-Iitaka dimensions. Several surface examples are studied in more details, $\{\mathbb \{P\}\}^2$ blown up in 9 points giving a counter example to equality of numerical dimension and codimension of the leaves.},
affiliation = {Universität Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln (Allemagne)},
author = {Eckl, Thomas},
journal = {Annales de l’institut Fourier},
keywords = {singular hermitian line bundles; moving intersection numbers; numerically trivial foliations; singular Hermitian line bundles},
language = {eng},
number = {4},
pages = {887-938},
publisher = {Association des Annales de l'Institut Fourier},
title = {Numerically trivial foliations},
url = {http://eudml.org/doc/116137},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Eckl, Thomas
TI - Numerically trivial foliations
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 887
EP - 938
AB - Given a positive singular hermitian metric of a pseudoeffective line bundle on a complex Kähler manifold, a singular foliation is constructed satisfying certain analytic analogues of numerical conditions. This foliation refines Tsuji’s numerically trivial fibration and the Iitaka fibration. Using almost positive singular hermitian metrics with analytic singularities on a pseudo-effective line bundle , a foliation is constructed refining the nef fibration. If the singularities of the foliation are isolated points, the codimension of the leaves is an upper bound to the numerical dimension of the line bundle, and the foliation can be interpreted as a geometric reason for the deviation of nef and Kodaira-Iitaka dimensions. Several surface examples are studied in more details, ${\mathbb {P}}^2$ blown up in 9 points giving a counter example to equality of numerical dimension and codimension of the leaves.
LA - eng
KW - singular hermitian line bundles; moving intersection numbers; numerically trivial foliations; singular Hermitian line bundles
UR - http://eudml.org/doc/116137
ER -

References

top
  1. Th. Bauer, F. Campana, Th. Eckl, St. Kebekus, Th. Peternell, S. Rams, T. Szemberg, L. Wotzlaw, A reduction map for nef line bundles, Analytic and Algebraic Methods in Complex Geometry. Konferenzbericht der Konferenz zu Ehren von Hans Grauert, Goettingen (April 2000) Zbl1054.14019
  2. Ch. Birkenhake, H. Lange, Complex Tori, 177 (1999), Birkhäuser Zbl0945.14027MR1713785
  3. E. Bierstone, P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302 Zbl0896.14006MR1440306
  4. L. Bonavero, Inégalités de Morse et variétés de Moishezon, (1995) 
  5. S. Boucksom, On the volume of a line bundle, (2001) Zbl1101.14008MR1945706
  6. S. Boucksom, Cônes positifs des variétés complexes compactes, (2002) 
  7. S. Boucksom, Higher dimensional Zariski decompositions, (2002) 
  8. M. Brunella, Birational geometry of fibrations., First Latin American Congress of Mathematicians, IMPA, July 31-August 4, 2000 (2000) Zbl1073.14022
  9. E. Bedford, B.A. Taylor, The Dirichlet Problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44 Zbl0315.31007MR445006
  10. J.-P. Demailly, L. Ein, R. Lazarsfeld, A Subadditivity Property of Multiplier Ideals, Michigan Math. J. 48 (2000), 137-156 Zbl1077.14516MR1786484
  11. J.-P. Demailly, Estimations L 2 pour l’opérateur ¯ d’un fibré vectoriel holomorphe semi-positif au dessus d’une variété kählerienne complète, Ann. Sci. ENS 15 (1982), 457-511 Zbl0507.32021MR690650
  12. J.-P. Demailly, Regularization of closed positive currents and Intersection theory, J. Alg. Geom. 1 (1992), 361-409 Zbl0777.32016MR1158622
  13. J.-P. Demailly, Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing theorems and effective results in Algebraic Geometry, ICTP Trieste (April 2000) Zbl1102.14300
  14. J.-P. Demailly, Private communication, (2002) 
  15. J. Dieudonné, Treatise on Analysis II, (1970), Academic Press Zbl0202.04901MR258551
  16. J.-P. Demailly, Th. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom. 3 (1994), 295-345 Zbl0827.14027MR1257325
  17. J.-P. Demailly, Th. Peternell, M. Schneider, Kähler manifolds with semipositive anticanonical bundle, Comp. Math. 101 (1996), 217-224 Zbl1008.32008MR1389367
  18. J.-P. Demailly, Th. Peternell, M. Schneider, Pseudo-effective line bundles on compact kähler manifolds, Int. J. Math. 12 (2001), 689-741 Zbl1111.32302MR1875649
  19. Thomas Eckl, Tsuji's Numerical Trivial Fibrations, (2002) Zbl1065.14009
  20. R. Friedman, Algebraic surface and holomorphic vector bundles, (1998), Springer Zbl0902.14029MR1600388
  21. T. Fujita, Approximating Zariski decomposition of big line bundles, Kodai Math. J. 17 (1994), 1-3 Zbl0814.14006MR1262949
  22. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79 (1964), 109-326 Zbl0122.38603MR199184
  23. S. Iitaka, Algebraic Geometry, 76 (1982), Springer, New York Zbl0491.14006MR637060
  24. Y. Kawamata, Deformations of canonical singularities, J. Amer. Math. Soc. 12 (1999), 85-92 Zbl0906.14001MR1631527
  25. R. Lazarsfeld, Multiplier ideals for algebraic geometers, (August 2000) 
  26. P. Lelong, Fonctions Plurisousharmonique et Formes Différentielles Positives, (1968), Gordon and Breach, London Zbl0195.11603MR243112
  27. H. Ben Messaoud, H. ElMir, Opérateur de Monge-Ampère et Tranchage des Courants Positifs Fermés, J. Geom. Analysis 10 (2000), 139-168 Zbl1005.32023MR1758586
  28. Y. Miyaoka, Deformations of a morphism along a foliation and applications, Proc. Symp. Pure Math. 46 (1987), 245-268 Zbl0659.14008MR927960
  29. Ch. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, 3 (1980), Birkhäuser Zbl0438.32016MR561910
  30. S. Takayama, Iitaka's fibration via multiplier ideals, Trans. AMS 355 (2002), 37-47 Zbl1055.14011MR1928076
  31. H. Tsuji, Existence and applications of the Analytic Zariski Decomposition, Analysis and geometry in several complex variables (1999), 253-271, Birkhäuser Zbl0965.32022
  32. H. Tsuji, Numerically trivial fibrations, (2000) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.