Numerically trivial foliations
Thomas Eckl[1]
- [1] Universität Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln (Allemagne)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 4, page 887-938
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEckl, Thomas. "Numerically trivial foliations." Annales de l’institut Fourier 54.4 (2004): 887-938. <http://eudml.org/doc/116137>.
@article{Eckl2004,
abstract = {Given a positive singular hermitian metric of a pseudoeffective line bundle on a complex
Kähler manifold, a singular foliation is constructed satisfying certain analytic
analogues of numerical conditions. This foliation refines Tsuji’s numerically trivial
fibration and the Iitaka fibration. Using almost positive singular hermitian metrics with
analytic singularities on a pseudo-effective line bundle , a foliation is constructed
refining the nef fibration. If the singularities of the foliation are isolated points,
the codimension of the leaves is an upper bound to the numerical dimension of the line
bundle, and the foliation can be interpreted as a geometric reason for the deviation of
nef and Kodaira-Iitaka dimensions. Several surface examples are studied in more details,
$\{\mathbb \{P\}\}^2$ blown up in 9 points giving a counter example to equality of numerical
dimension and codimension of the leaves.},
affiliation = {Universität Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln (Allemagne)},
author = {Eckl, Thomas},
journal = {Annales de l’institut Fourier},
keywords = {singular hermitian line bundles; moving intersection numbers; numerically trivial foliations; singular Hermitian line bundles},
language = {eng},
number = {4},
pages = {887-938},
publisher = {Association des Annales de l'Institut Fourier},
title = {Numerically trivial foliations},
url = {http://eudml.org/doc/116137},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Eckl, Thomas
TI - Numerically trivial foliations
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 4
SP - 887
EP - 938
AB - Given a positive singular hermitian metric of a pseudoeffective line bundle on a complex
Kähler manifold, a singular foliation is constructed satisfying certain analytic
analogues of numerical conditions. This foliation refines Tsuji’s numerically trivial
fibration and the Iitaka fibration. Using almost positive singular hermitian metrics with
analytic singularities on a pseudo-effective line bundle , a foliation is constructed
refining the nef fibration. If the singularities of the foliation are isolated points,
the codimension of the leaves is an upper bound to the numerical dimension of the line
bundle, and the foliation can be interpreted as a geometric reason for the deviation of
nef and Kodaira-Iitaka dimensions. Several surface examples are studied in more details,
${\mathbb {P}}^2$ blown up in 9 points giving a counter example to equality of numerical
dimension and codimension of the leaves.
LA - eng
KW - singular hermitian line bundles; moving intersection numbers; numerically trivial foliations; singular Hermitian line bundles
UR - http://eudml.org/doc/116137
ER -
References
top- Th. Bauer, F. Campana, Th. Eckl, St. Kebekus, Th. Peternell, S. Rams, T. Szemberg, L. Wotzlaw, A reduction map for nef line bundles, Analytic and Algebraic Methods in Complex Geometry. Konferenzbericht der Konferenz zu Ehren von Hans Grauert, Goettingen (April 2000) Zbl1054.14019
- Ch. Birkenhake, H. Lange, Complex Tori, 177 (1999), Birkhäuser Zbl0945.14027MR1713785
- E. Bierstone, P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302 Zbl0896.14006MR1440306
- L. Bonavero, Inégalités de Morse et variétés de Moishezon, (1995)
- S. Boucksom, On the volume of a line bundle, (2001) Zbl1101.14008MR1945706
- S. Boucksom, Cônes positifs des variétés complexes compactes, (2002)
- S. Boucksom, Higher dimensional Zariski decompositions, (2002)
- M. Brunella, Birational geometry of fibrations., First Latin American Congress of Mathematicians, IMPA, July 31-August 4, 2000 (2000) Zbl1073.14022
- E. Bedford, B.A. Taylor, The Dirichlet Problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44 Zbl0315.31007MR445006
- J.-P. Demailly, L. Ein, R. Lazarsfeld, A Subadditivity Property of Multiplier Ideals, Michigan Math. J. 48 (2000), 137-156 Zbl1077.14516MR1786484
- J.-P. Demailly, Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au dessus d’une variété kählerienne complète, Ann. Sci. ENS 15 (1982), 457-511 Zbl0507.32021MR690650
- J.-P. Demailly, Regularization of closed positive currents and Intersection theory, J. Alg. Geom. 1 (1992), 361-409 Zbl0777.32016MR1158622
- J.-P. Demailly, Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing theorems and effective results in Algebraic Geometry, ICTP Trieste (April 2000) Zbl1102.14300
- J.-P. Demailly, Private communication, (2002)
- J. Dieudonné, Treatise on Analysis II, (1970), Academic Press Zbl0202.04901MR258551
- J.-P. Demailly, Th. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom. 3 (1994), 295-345 Zbl0827.14027MR1257325
- J.-P. Demailly, Th. Peternell, M. Schneider, Kähler manifolds with semipositive anticanonical bundle, Comp. Math. 101 (1996), 217-224 Zbl1008.32008MR1389367
- J.-P. Demailly, Th. Peternell, M. Schneider, Pseudo-effective line bundles on compact kähler manifolds, Int. J. Math. 12 (2001), 689-741 Zbl1111.32302MR1875649
- Thomas Eckl, Tsuji's Numerical Trivial Fibrations, (2002) Zbl1065.14009
- R. Friedman, Algebraic surface and holomorphic vector bundles, (1998), Springer Zbl0902.14029MR1600388
- T. Fujita, Approximating Zariski decomposition of big line bundles, Kodai Math. J. 17 (1994), 1-3 Zbl0814.14006MR1262949
- H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. Math. 79 (1964), 109-326 Zbl0122.38603MR199184
- S. Iitaka, Algebraic Geometry, 76 (1982), Springer, New York Zbl0491.14006MR637060
- Y. Kawamata, Deformations of canonical singularities, J. Amer. Math. Soc. 12 (1999), 85-92 Zbl0906.14001MR1631527
- R. Lazarsfeld, Multiplier ideals for algebraic geometers, (August 2000)
- P. Lelong, Fonctions Plurisousharmonique et Formes Différentielles Positives, (1968), Gordon and Breach, London Zbl0195.11603MR243112
- H. Ben Messaoud, H. ElMir, Opérateur de Monge-Ampère et Tranchage des Courants Positifs Fermés, J. Geom. Analysis 10 (2000), 139-168 Zbl1005.32023MR1758586
- Y. Miyaoka, Deformations of a morphism along a foliation and applications, Proc. Symp. Pure Math. 46 (1987), 245-268 Zbl0659.14008MR927960
- Ch. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, 3 (1980), Birkhäuser Zbl0438.32016MR561910
- S. Takayama, Iitaka's fibration via multiplier ideals, Trans. AMS 355 (2002), 37-47 Zbl1055.14011MR1928076
- H. Tsuji, Existence and applications of the Analytic Zariski Decomposition, Analysis and geometry in several complex variables (1999), 253-271, Birkhäuser Zbl0965.32022
- H. Tsuji, Numerically trivial fibrations, (2000)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.