Algebraic bounds on analytic multiplier ideals
- [1] Rice University Department of Mathematics Houston, TX 77005 (USA)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 3, page 1077-1108
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLehmann, Brian. "Algebraic bounds on analytic multiplier ideals." Annales de l’institut Fourier 64.3 (2014): 1077-1108. <http://eudml.org/doc/275477>.
@article{Lehmann2014,
abstract = {Given a pseudo-effective divisor $L$ we construct the diminished ideal $\mathcal\{J\}_\{\sigma \}(L)$, a “continuous” extension of the asymptotic multiplier ideal for big divisors to the pseudo-effective boundary. Our main theorem shows that for most pseudo-effective divisors $L$ the multiplier ideal $\mathcal\{J\}(h_\{\textrm\{min\}\})$ of the metric of minimal singularities on $\mathcal\{O\}_\{X\}(L)$ is contained in $\mathcal\{J\}_\{\sigma \}(L)$. We also characterize abundant divisors using the diminished ideal, indicating that the geometric and analytic information should coincide.},
affiliation = {Rice University Department of Mathematics Houston, TX 77005 (USA)},
author = {Lehmann, Brian},
journal = {Annales de l’institut Fourier},
keywords = {Multiplier ideals; metric of minimal singularities; multiplier ideals},
language = {eng},
number = {3},
pages = {1077-1108},
publisher = {Association des Annales de l’institut Fourier},
title = {Algebraic bounds on analytic multiplier ideals},
url = {http://eudml.org/doc/275477},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Lehmann, Brian
TI - Algebraic bounds on analytic multiplier ideals
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1077
EP - 1108
AB - Given a pseudo-effective divisor $L$ we construct the diminished ideal $\mathcal{J}_{\sigma }(L)$, a “continuous” extension of the asymptotic multiplier ideal for big divisors to the pseudo-effective boundary. Our main theorem shows that for most pseudo-effective divisors $L$ the multiplier ideal $\mathcal{J}(h_{\textrm{min}})$ of the metric of minimal singularities on $\mathcal{O}_{X}(L)$ is contained in $\mathcal{J}_{\sigma }(L)$. We also characterize abundant divisors using the diminished ideal, indicating that the geometric and analytic information should coincide.
LA - eng
KW - Multiplier ideals; metric of minimal singularities; multiplier ideals
UR - http://eudml.org/doc/275477
ER -
References
top- S. Boucksom, Divisorial Zariski Decompositions on Compact Complex Manifolds, Ann. Sci. École Norm. Sup. 37 (2004), 45-76 Zbl1054.32010MR2050205
- S. Boucksom, J.-P. Demailly, M. Păun, T. Peternell, The Pseudo-Effective Cone of a Compact Kähler Manifold and Varieties of Negative Kodaira Dimension, J. Alg. Geom. 22 (2013), 201-248 Zbl1267.32017MR3019449
- S. Boucksom, C. Favre, M. Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008), 449-494 Zbl1146.32017MR2426355
- J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Bayreuth, 1990) (1992), 87-104, Springer, Berlin Zbl0784.32024MR1178721
- J.-P. Demailly, Monge-Ampère Operators, Lelong Numbers and Intersection Theory, Complex Analysis and Geometry (1993), 115-193, Plenum Press, New York Zbl0792.32006MR1211880
- J.-P. Demailly, Complex analytic and differential geometry, (2012)
- J.-P. Demailly, L. Ein, R. Lazarsfeld, A Subadditivity Property of Multiplier Ideals, Michigan Math. J. 48 (2000), 137-156 Zbl1077.14516MR1786484
- J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), 525-556 Zbl0994.32021MR1852009
- J.-P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, Journal of Algebraic Geometry 3 (1994), 295-346 Zbl0827.14027MR1257325
- J.-P. Demailly, T. Peternell, M. Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), 689-741 Zbl1111.32302MR1875649
- T. Eckl, Numerically trival foliations, Ann. Inst. Fourier (Grenoble) 54 (2004), 887-938 Zbl1071.32018MR2111016
- T. Eckl, Numerically trival foliations, Iitaka fibrations, and the numerical dimension, (2005) MR2111016
- L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, M. Popa, Asymptotic invariants of base loci, Pure Appl. Math. Q. 1 (2005), 379-403 Zbl1139.14008MR2194730
- L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, M. Popa, Restricted Volumes and Base Loci of Linear Series, Amer. J. Math. 131 (2009), 607-651 Zbl1179.14006MR2530849
- C. Favre, M. Jonsson, The valuative tree, 1853 (2004), Springer-Verlag, Berlin Heidelberg Zbl1064.14024MR2097722
- C. Favre, M. Jonsson, Valuations and multiplier ideals, J. Amer. Math. Soc. 18 (2005), 655-684 Zbl1075.14001MR2138140
- C. Hacon, A derived category approach to generic vanishing, J. Reine Angew. Math. 575 (2004), 173-187 Zbl1137.14012MR2097552
- M. Jonsson, M. Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), 2145-2209 Zbl1272.14016MR3060755
- R. Lazarsfeld, Positivity in Algebraic Geometry I-II, 48-49 (2004), Springer-Verlag, Berlin Heidelberg Zbl0633.14016MR2095471
- B. Lehmann, On Eckl’s pseudo-effective reduction map, (2011) Zbl06268334
- N. Nakayama, Zariski-decomposition and abundance, 14 (2004), Mathematical Society of Japan, Tokyo Zbl1061.14018MR2104208
- F. Russo, A characterization of nef and good divisors by asymptotic multiplier ideals, Bulletin of the Belgian Mathematical Society-Simon Stevin 16 (2009), 943-951 Zbl1183.14011MR2574371
- Y.T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Inventiones Mathematicae 27 (1974), 53-156 Zbl0289.32003MR352516
- S. Takayama, Iitaka’s fibration via multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), 37-47 Zbl1055.14011MR1928076
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.