Algebraic bounds on analytic multiplier ideals

Brian Lehmann[1]

  • [1] Rice University Department of Mathematics Houston, TX 77005 (USA)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 3, page 1077-1108
  • ISSN: 0373-0956

Abstract

top
Given a pseudo-effective divisor L we construct the diminished ideal 𝒥 σ ( L ) , a “continuous” extension of the asymptotic multiplier ideal for big divisors to the pseudo-effective boundary. Our main theorem shows that for most pseudo-effective divisors L the multiplier ideal 𝒥 ( h min ) of the metric of minimal singularities on 𝒪 X ( L ) is contained in 𝒥 σ ( L ) . We also characterize abundant divisors using the diminished ideal, indicating that the geometric and analytic information should coincide.

How to cite

top

Lehmann, Brian. "Algebraic bounds on analytic multiplier ideals." Annales de l’institut Fourier 64.3 (2014): 1077-1108. <http://eudml.org/doc/275477>.

@article{Lehmann2014,
abstract = {Given a pseudo-effective divisor $L$ we construct the diminished ideal $\mathcal\{J\}_\{\sigma \}(L)$, a “continuous” extension of the asymptotic multiplier ideal for big divisors to the pseudo-effective boundary. Our main theorem shows that for most pseudo-effective divisors $L$ the multiplier ideal $\mathcal\{J\}(h_\{\textrm\{min\}\})$ of the metric of minimal singularities on $\mathcal\{O\}_\{X\}(L)$ is contained in $\mathcal\{J\}_\{\sigma \}(L)$. We also characterize abundant divisors using the diminished ideal, indicating that the geometric and analytic information should coincide.},
affiliation = {Rice University Department of Mathematics Houston, TX 77005 (USA)},
author = {Lehmann, Brian},
journal = {Annales de l’institut Fourier},
keywords = {Multiplier ideals; metric of minimal singularities; multiplier ideals},
language = {eng},
number = {3},
pages = {1077-1108},
publisher = {Association des Annales de l’institut Fourier},
title = {Algebraic bounds on analytic multiplier ideals},
url = {http://eudml.org/doc/275477},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Lehmann, Brian
TI - Algebraic bounds on analytic multiplier ideals
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1077
EP - 1108
AB - Given a pseudo-effective divisor $L$ we construct the diminished ideal $\mathcal{J}_{\sigma }(L)$, a “continuous” extension of the asymptotic multiplier ideal for big divisors to the pseudo-effective boundary. Our main theorem shows that for most pseudo-effective divisors $L$ the multiplier ideal $\mathcal{J}(h_{\textrm{min}})$ of the metric of minimal singularities on $\mathcal{O}_{X}(L)$ is contained in $\mathcal{J}_{\sigma }(L)$. We also characterize abundant divisors using the diminished ideal, indicating that the geometric and analytic information should coincide.
LA - eng
KW - Multiplier ideals; metric of minimal singularities; multiplier ideals
UR - http://eudml.org/doc/275477
ER -

References

top
  1. S. Boucksom, Divisorial Zariski Decompositions on Compact Complex Manifolds, Ann. Sci. École Norm. Sup. 37 (2004), 45-76 Zbl1054.32010MR2050205
  2. S. Boucksom, J.-P. Demailly, M. Păun, T. Peternell, The Pseudo-Effective Cone of a Compact Kähler Manifold and Varieties of Negative Kodaira Dimension, J. Alg. Geom. 22 (2013), 201-248 Zbl1267.32017MR3019449
  3. S. Boucksom, C. Favre, M. Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008), 449-494 Zbl1146.32017MR2426355
  4. J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Bayreuth, 1990) (1992), 87-104, Springer, Berlin Zbl0784.32024MR1178721
  5. J.-P. Demailly, Monge-Ampère Operators, Lelong Numbers and Intersection Theory, Complex Analysis and Geometry (1993), 115-193, Plenum Press, New York Zbl0792.32006MR1211880
  6. J.-P. Demailly, Complex analytic and differential geometry, (2012) 
  7. J.-P. Demailly, L. Ein, R. Lazarsfeld, A Subadditivity Property of Multiplier Ideals, Michigan Math. J. 48 (2000), 137-156 Zbl1077.14516MR1786484
  8. J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), 525-556 Zbl0994.32021MR1852009
  9. J.-P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, Journal of Algebraic Geometry 3 (1994), 295-346 Zbl0827.14027MR1257325
  10. J.-P. Demailly, T. Peternell, M. Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), 689-741 Zbl1111.32302MR1875649
  11. T. Eckl, Numerically trival foliations, Ann. Inst. Fourier (Grenoble) 54 (2004), 887-938 Zbl1071.32018MR2111016
  12. T. Eckl, Numerically trival foliations, Iitaka fibrations, and the numerical dimension, (2005) MR2111016
  13. L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, M. Popa, Asymptotic invariants of base loci, Pure Appl. Math. Q. 1 (2005), 379-403 Zbl1139.14008MR2194730
  14. L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, M. Popa, Restricted Volumes and Base Loci of Linear Series, Amer. J. Math. 131 (2009), 607-651 Zbl1179.14006MR2530849
  15. C. Favre, M. Jonsson, The valuative tree, 1853 (2004), Springer-Verlag, Berlin Heidelberg Zbl1064.14024MR2097722
  16. C. Favre, M. Jonsson, Valuations and multiplier ideals, J. Amer. Math. Soc. 18 (2005), 655-684 Zbl1075.14001MR2138140
  17. C. Hacon, A derived category approach to generic vanishing, J. Reine Angew. Math. 575 (2004), 173-187 Zbl1137.14012MR2097552
  18. M. Jonsson, M. Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), 2145-2209 Zbl1272.14016MR3060755
  19. R. Lazarsfeld, Positivity in Algebraic Geometry I-II, 48-49 (2004), Springer-Verlag, Berlin Heidelberg Zbl0633.14016MR2095471
  20. B. Lehmann, On Eckl’s pseudo-effective reduction map, (2011) Zbl06268334
  21. N. Nakayama, Zariski-decomposition and abundance, 14 (2004), Mathematical Society of Japan, Tokyo Zbl1061.14018MR2104208
  22. F. Russo, A characterization of nef and good divisors by asymptotic multiplier ideals, Bulletin of the Belgian Mathematical Society-Simon Stevin 16 (2009), 943-951 Zbl1183.14011MR2574371
  23. Y.T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Inventiones Mathematicae 27 (1974), 53-156 Zbl0289.32003MR352516
  24. S. Takayama, Iitaka’s fibration via multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), 37-47 Zbl1055.14011MR1928076

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.