On the Gevrey hypo-ellipticity of sums of squares of vector fields
Antonio Bove[1]; François Treves
- [1] Università di Bologna, Dipartimento di Matematica, Piazza di porta S. Donato 5, 40127 Bologna (Italy), Rutgers University, Department of Mathematics, 110 Frelinghuysen RD, Piscataway, N.J. 08854-8019 (USA)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 5, page 1443-1475
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBove, Antonio, and Treves, François. "On the Gevrey hypo-ellipticity of sums of squares of vector fields." Annales de l’institut Fourier 54.5 (2004): 1443-1475. <http://eudml.org/doc/116148>.
@article{Bove2004,
abstract = {The article studies a second-order linear differential operator of the type $ -L=$$X_\{1\}^\{2\}+\cdots +X_\{r\}^\{2\}$, i. e., a sum of squares of real, and real-analytic, vector
fields $X_\{i\}$. The conjectured necessary and sufficient condition for analytic hypo-
ellipticity, based on the Poisson stratification of the characteristic variety, is
recalled in simple analytic and geometric terms. It is conjectured that the microlocal
Gevrey hypo-ellipticity of $L$ depends on the restrictions of the principal symbol $
\sigma \left( L\right) $ to $2D$ or $4D$ symplectic manifolds associated to each
bicharateristic curve in a nonsymplectic stratum.},
affiliation = {Università di Bologna, Dipartimento di Matematica, Piazza di porta S. Donato 5, 40127 Bologna (Italy), Rutgers University, Department of Mathematics, 110 Frelinghuysen RD, Piscataway, N.J. 08854-8019 (USA)},
author = {Bove, Antonio, Treves, François},
journal = {Annales de l’institut Fourier},
keywords = {stratification; symplectic; sums of squares of vector fields; analytic and Gevrey hypo-ellipticity; sum of squares; bicharacteristic curves},
language = {eng},
number = {5},
pages = {1443-1475},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Gevrey hypo-ellipticity of sums of squares of vector fields},
url = {http://eudml.org/doc/116148},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Bove, Antonio
AU - Treves, François
TI - On the Gevrey hypo-ellipticity of sums of squares of vector fields
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1443
EP - 1475
AB - The article studies a second-order linear differential operator of the type $ -L=$$X_{1}^{2}+\cdots +X_{r}^{2}$, i. e., a sum of squares of real, and real-analytic, vector
fields $X_{i}$. The conjectured necessary and sufficient condition for analytic hypo-
ellipticity, based on the Poisson stratification of the characteristic variety, is
recalled in simple analytic and geometric terms. It is conjectured that the microlocal
Gevrey hypo-ellipticity of $L$ depends on the restrictions of the principal symbol $
\sigma \left( L\right) $ to $2D$ or $4D$ symplectic manifolds associated to each
bicharateristic curve in a nonsymplectic stratum.
LA - eng
KW - stratification; symplectic; sums of squares of vector fields; analytic and Gevrey hypo-ellipticity; sum of squares; bicharacteristic curves
UR - http://eudml.org/doc/116148
ER -
References
top- P. Albano, A. Bove, Analytic stratifications and the cutlocus of a class of distance functions Zbl1134.35007
- M. S. Baouendi, Ch. Goulaouic, Non analytic-hypoellipticity for some degenerate operators, Bull. A. M. S 78 (1972), 483-486 Zbl0276.35023MR296507
- E. Bernardi, A. Bove, D.S. Tartakoff, On a conjecture of Treves: analytic hypoellipticity and Poisson strata, Indiana Univ. Math. J 47 (1998), 401-417 Zbl0937.35023MR1647900
- A. Bove, D.S. Tartakoff, Optimal non-isotropic Gevrey exponent for sums of squares of vector fields, Comm. in P. D. E 22 (1997), 1263-1282 Zbl0921.35043MR1466316
- A. Bove, D.S. Tartakoff, On a class of sums of squares with a given Poisson-Treves stratification, J. Geom. Analysis 13 (2003), 391-420 Zbl1036.35059MR1984848
- M. Christ, A class of hypoelliptic PDE admitting nonanalytic solutions, Contemporary Math. A. M. S 137 (1992), 155-167 Zbl0804.35022MR1190978
- M. Christ, A necessary condition for analytic hypoellipticity, Math. Research Letters 1 (1994), 241-248 Zbl0841.35026MR1266762
- M. Christ, Hypoellipticity: geometrization and speculation, Complex Analysis and Geometry (1997), 91-109, Birkhäuser, Paris Zbl0965.47033
- S. Chanillo, Kirillov theory, Treves strata, Schrödinger equations and analytic hypoellipticity of sums of squares, (August 2001)
- S. Chanillo, B. Helffer, A. Laptev, Nonlinear eigenvalues and analytic hypoellipticity, (2003) Zbl1053.35045
- O. Costin, R. Costin, Failure of Analytic Hypo-ellipticity in a Class of Differential Operators, Annali Sc. Normale Sup. Pisa Cl. Sci 5 (2003), 21-45 Zbl1150.35018
- M. Derridj, C. Zuily, Régularité analytique et Gevrey d'opérateurs elliptiques dégénérés, J. Math. Pures et Appl 52 (1973), 65-80 Zbl0263.35020MR390474
- A. Grigis, J. Sjöstrand, Front d'onde analytique et sommes de carrés de champs de vecteurs, Duke Math. J 52 (1985), 35-51 Zbl0581.35009MR791290
- V. V. Gru#x0161;in, On a class of elliptic pseudodifferential operators degenerate on a submanifold, Math. USSR Sbornik 13 (1971), 155-185 Zbl0238.47038
- N. Hanges, Analytic regularity for an operator with Treves curves Zbl1053.35046MR2053489
- N. Hanges, A.A. Himonas, Singular solutions for sums of squares of vector fields, Comm. in PDE 16 (1991), 1503-1511 Zbl0745.35011MR1132794
- N. Hanges, A.A. Himonas, Non-analytic hypoellipticity in the presence of symplecticity, Proceed. A.M.S 126 (1998), 1549-1557 Zbl0906.35027MR1422872
- N. Hanges, A.A. Himonas, Singular solutions for a class of Grusin type operators, Proceed. A. M. S 124 (1996), 1549-1557 Zbl0858.35025MR1307525
- B. Helffer, Hypoellipticité analytique sur des groupes nilpotents de rang 2, Séminaire Goulaouic-Schwartz (1979/80), École polytechnique, Palaiseau France, I.1-I.13 Zbl0471.35022
- B. Helffer, Conditions nécessaires d'hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué, J. Diff. Equations 44 (1982), 460-481 Zbl0458.35019MR661164
- L. Hörmander, Hypoelliptic second order differential equations, Acta Math 119 (1967), 147-171 Zbl0156.10701MR222474
- T. Hoshiro, Failure of analytic hypoellipticity for some operators of type, J. Math. Kyoto Univ. 35 (1995), 569-581 Zbl0846.35034MR1365248
- J.J. Kohn, Pseudo-differential operators and hypoellipticity, Proceed. Symposia in Pure Math. XXIII (1973), 61-70 Zbl0262.35007MR338592
- T. Matsuzawa, Optimal Gevrey esponents for some degenerate elliptic operators, J. Korean Math. Soc 35 (1998), 981-997 Zbl0924.35031MR1666486
- G. Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. in PDE 6 (1980), 1-90 Zbl0455.35040MR597752
- G. Métivier, Une classe d'opérateurs non hypoelliptiques analytiques, Indiana Univ. Math. J 29 (1980), 169-186 Zbl0455.35041MR589650
- G. Métivier, Non-hypoellipticité analytique pour , C. R. Acad. Sci. Paris 292 (1981), 401-404 Zbl0481.35033MR609762
- T. Nagano, Linear differential systems with singularities and applications to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404 Zbl0147.23502MR199865
- O. Oleinik, On the analyticity of solutions of partial differential equations and systems, Astérisque 2,3 (1973), 272-285 Zbl0291.35013MR399640
- O. A. Oleinik, E.V. Radkevic, Second order equations with nonnegative characteristic form, (1973), AMS and Plenum Press MR457908
- L.P. Rothschild, E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math 137 (1977), 247-320 Zbl0346.35030MR436223
- J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Arkiv för Mat 12 (1974), 85-130 Zbl0317.35076MR352749
- J. Sjöstrand, Analytic wavefront sets and operators with multiple characteristics, Hokkaido Math. J 12 (1983), 392-433 Zbl0531.35022MR725588
- H.J. Sussmann, Real-analytic desingularization and subanalytic sets: an elementary approach, Trans. A. M. S 317 (1990), 417-461 Zbl0696.32005MR943608
- D.S Tartakoff, On the local real analyticity of solutions to and the -Neumann problem, Acta Math. 145 (1980), 117-204 Zbl0456.35019MR590289
- J.-M. Trépreau, Sur l'hypoellipticité analytique microlocale des opérateurs de type principal, Comm. in PDE 9 (1984), 1119-1146 Zbl0566.35027MR759240
- F. Treves, Analytic hypo-elliptic PDEs of principal type, Comm. Pure Applied Math. XXIV (1971), 537-570 Zbl0222.35014MR296509
- F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the -Neumann problem, Comm. in PDE 3 (1978), 476-642 Zbl0384.35055MR492802
- F. Treves, Symplectic geometry and analytic hypo-ellipticity, Differential Equations: La Pietra 1996 65 (1999), 201-219, A.M.S. Zbl0938.35038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.