On the Gevrey hypo-ellipticity of sums of squares of vector fields

Antonio Bove[1]; François Treves

  • [1] Università di Bologna, Dipartimento di Matematica, Piazza di porta S. Donato 5, 40127 Bologna (Italy), Rutgers University, Department of Mathematics, 110 Frelinghuysen RD, Piscataway, N.J. 08854-8019 (USA)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 5, page 1443-1475
  • ISSN: 0373-0956

Abstract

top
The article studies a second-order linear differential operator of the type - L = X 1 2 + + X r 2 , i. e., a sum of squares of real, and real-analytic, vector fields X i . The conjectured necessary and sufficient condition for analytic hypo- ellipticity, based on the Poisson stratification of the characteristic variety, is recalled in simple analytic and geometric terms. It is conjectured that the microlocal Gevrey hypo-ellipticity of L depends on the restrictions of the principal symbol σ L to 2 D or 4 D symplectic manifolds associated to each bicharateristic curve in a nonsymplectic stratum.

How to cite

top

Bove, Antonio, and Treves, François. "On the Gevrey hypo-ellipticity of sums of squares of vector fields." Annales de l’institut Fourier 54.5 (2004): 1443-1475. <http://eudml.org/doc/116148>.

@article{Bove2004,
abstract = {The article studies a second-order linear differential operator of the type $ -L=$$X_\{1\}^\{2\}+\cdots +X_\{r\}^\{2\}$, i. e., a sum of squares of real, and real-analytic, vector fields $X_\{i\}$. The conjectured necessary and sufficient condition for analytic hypo- ellipticity, based on the Poisson stratification of the characteristic variety, is recalled in simple analytic and geometric terms. It is conjectured that the microlocal Gevrey hypo-ellipticity of $L$ depends on the restrictions of the principal symbol $ \sigma \left( L\right) $ to $2D$ or $4D$ symplectic manifolds associated to each bicharateristic curve in a nonsymplectic stratum.},
affiliation = {Università di Bologna, Dipartimento di Matematica, Piazza di porta S. Donato 5, 40127 Bologna (Italy), Rutgers University, Department of Mathematics, 110 Frelinghuysen RD, Piscataway, N.J. 08854-8019 (USA)},
author = {Bove, Antonio, Treves, François},
journal = {Annales de l’institut Fourier},
keywords = {stratification; symplectic; sums of squares of vector fields; analytic and Gevrey hypo-ellipticity; sum of squares; bicharacteristic curves},
language = {eng},
number = {5},
pages = {1443-1475},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Gevrey hypo-ellipticity of sums of squares of vector fields},
url = {http://eudml.org/doc/116148},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Bove, Antonio
AU - Treves, François
TI - On the Gevrey hypo-ellipticity of sums of squares of vector fields
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1443
EP - 1475
AB - The article studies a second-order linear differential operator of the type $ -L=$$X_{1}^{2}+\cdots +X_{r}^{2}$, i. e., a sum of squares of real, and real-analytic, vector fields $X_{i}$. The conjectured necessary and sufficient condition for analytic hypo- ellipticity, based on the Poisson stratification of the characteristic variety, is recalled in simple analytic and geometric terms. It is conjectured that the microlocal Gevrey hypo-ellipticity of $L$ depends on the restrictions of the principal symbol $ \sigma \left( L\right) $ to $2D$ or $4D$ symplectic manifolds associated to each bicharateristic curve in a nonsymplectic stratum.
LA - eng
KW - stratification; symplectic; sums of squares of vector fields; analytic and Gevrey hypo-ellipticity; sum of squares; bicharacteristic curves
UR - http://eudml.org/doc/116148
ER -

References

top
  1. P. Albano, A. Bove, Analytic stratifications and the cutlocus of a class of distance functions Zbl1134.35007
  2. M. S. Baouendi, Ch. Goulaouic, Non analytic-hypoellipticity for some degenerate operators, Bull. A. M. S 78 (1972), 483-486 Zbl0276.35023MR296507
  3. E. Bernardi, A. Bove, D.S. Tartakoff, On a conjecture of Treves: analytic hypoellipticity and Poisson strata, Indiana Univ. Math. J 47 (1998), 401-417 Zbl0937.35023MR1647900
  4. A. Bove, D.S. Tartakoff, Optimal non-isotropic Gevrey exponent for sums of squares of vector fields, Comm. in P. D. E 22 (1997), 1263-1282 Zbl0921.35043MR1466316
  5. A. Bove, D.S. Tartakoff, On a class of sums of squares with a given Poisson-Treves stratification, J. Geom. Analysis 13 (2003), 391-420 Zbl1036.35059MR1984848
  6. M. Christ, A class of hypoelliptic PDE admitting nonanalytic solutions, Contemporary Math. A. M. S 137 (1992), 155-167 Zbl0804.35022MR1190978
  7. M. Christ, A necessary condition for analytic hypoellipticity, Math. Research Letters 1 (1994), 241-248 Zbl0841.35026MR1266762
  8. M. Christ, Hypoellipticity: geometrization and speculation, Complex Analysis and Geometry (1997), 91-109, Birkhäuser, Paris Zbl0965.47033
  9. S. Chanillo, Kirillov theory, Treves strata, Schrödinger equations and analytic hypoellipticity of sums of squares, (August 2001) 
  10. S. Chanillo, B. Helffer, A. Laptev, Nonlinear eigenvalues and analytic hypoellipticity, (2003) Zbl1053.35045
  11. O. Costin, R. Costin, Failure of Analytic Hypo-ellipticity in a Class of Differential Operators, Annali Sc. Normale Sup. Pisa Cl. Sci 5 (2003), 21-45 Zbl1150.35018
  12. M. Derridj, C. Zuily, Régularité analytique et Gevrey d'opérateurs elliptiques dégénérés, J. Math. Pures et Appl 52 (1973), 65-80 Zbl0263.35020MR390474
  13. A. Grigis, J. Sjöstrand, Front d'onde analytique et sommes de carrés de champs de vecteurs, Duke Math. J 52 (1985), 35-51 Zbl0581.35009MR791290
  14. V. V. Gru#x0161;in, On a class of elliptic pseudodifferential operators degenerate on a submanifold, Math. USSR Sbornik 13 (1971), 155-185 Zbl0238.47038
  15. N. Hanges, Analytic regularity for an operator with Treves curves Zbl1053.35046MR2053489
  16. N. Hanges, A.A. Himonas, Singular solutions for sums of squares of vector fields, Comm. in PDE 16 (1991), 1503-1511 Zbl0745.35011MR1132794
  17. N. Hanges, A.A. Himonas, Non-analytic hypoellipticity in the presence of symplecticity, Proceed. A.M.S 126 (1998), 1549-1557 Zbl0906.35027MR1422872
  18. N. Hanges, A.A. Himonas, Singular solutions for a class of Grusin type operators, Proceed. A. M. S 124 (1996), 1549-1557 Zbl0858.35025MR1307525
  19. B. Helffer, Hypoellipticité analytique sur des groupes nilpotents de rang 2, Séminaire Goulaouic-Schwartz (1979/80), École polytechnique, Palaiseau France, I.1-I.13 Zbl0471.35022
  20. B. Helffer, Conditions nécessaires d'hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué, J. Diff. Equations 44 (1982), 460-481 Zbl0458.35019MR661164
  21. L. Hörmander, Hypoelliptic second order differential equations, Acta Math 119 (1967), 147-171 Zbl0156.10701MR222474
  22. T. Hoshiro, Failure of analytic hypoellipticity for some operators of X 2 + Y 2 type, J. Math. Kyoto Univ. 35 (1995), 569-581 Zbl0846.35034MR1365248
  23. J.J. Kohn, Pseudo-differential operators and hypoellipticity, Proceed. Symposia in Pure Math. XXIII (1973), 61-70 Zbl0262.35007MR338592
  24. T. Matsuzawa, Optimal Gevrey esponents for some degenerate elliptic operators, J. Korean Math. Soc 35 (1998), 981-997 Zbl0924.35031MR1666486
  25. G. Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. in PDE 6 (1980), 1-90 Zbl0455.35040MR597752
  26. G. Métivier, Une classe d'opérateurs non hypoelliptiques analytiques, Indiana Univ. Math. J 29 (1980), 169-186 Zbl0455.35041MR589650
  27. G. Métivier, Non-hypoellipticité analytique pour D x 2 + ( x 2 + y 2 ) D y 2 , C. R. Acad. Sci. Paris 292 (1981), 401-404 Zbl0481.35033MR609762
  28. T. Nagano, Linear differential systems with singularities and applications to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404 Zbl0147.23502MR199865
  29. O. Oleinik, On the analyticity of solutions of partial differential equations and systems, Astérisque 2,3 (1973), 272-285 Zbl0291.35013MR399640
  30. O. A. Oleinik, E.V. Radkevic, Second order equations with nonnegative characteristic form, (1973), AMS and Plenum Press MR457908
  31. L.P. Rothschild, E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math 137 (1977), 247-320 Zbl0346.35030MR436223
  32. J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Arkiv för Mat 12 (1974), 85-130 Zbl0317.35076MR352749
  33. J. Sjöstrand, Analytic wavefront sets and operators with multiple characteristics, Hokkaido Math. J 12 (1983), 392-433 Zbl0531.35022MR725588
  34. H.J. Sussmann, Real-analytic desingularization and subanalytic sets: an elementary approach, Trans. A. M. S 317 (1990), 417-461 Zbl0696.32005MR943608
  35. D.S Tartakoff, On the local real analyticity of solutions to U and the ¯ -Neumann problem, Acta Math. 145 (1980), 117-204 Zbl0456.35019MR590289
  36. J.-M. Trépreau, Sur l'hypoellipticité analytique microlocale des opérateurs de type principal, Comm. in PDE 9 (1984), 1119-1146 Zbl0566.35027MR759240
  37. F. Treves, Analytic hypo-elliptic PDEs of principal type, Comm. Pure Applied Math. XXIV (1971), 537-570 Zbl0222.35014MR296509
  38. F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the ¯ -Neumann problem, Comm. in PDE 3 (1978), 476-642 Zbl0384.35055MR492802
  39. F. Treves, Symplectic geometry and analytic hypo-ellipticity, Differential Equations: La Pietra 1996 65 (1999), 201-219, A.M.S. Zbl0938.35038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.