Failure of analytic hypoellipticity in a class of differential operators

Ovidiu Costin; Rodica D. Costin

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 1, page 21-45
  • ISSN: 0391-173X

Abstract

top
For the hypoelliptic differential operators P = x 2 + x k y - x l t 2 introduced by T. Hoshiro, generalizing a class of M. Christ, in the cases of k and l left open in the analysis, the operators P also fail to be analytic hypoelliptic (except for ( k , l ) = ( 0 , 1 ) ), in accordance with Treves’ conjecture. The proof is constructive, suitable for generalization, and relies on evaluating a family of eigenvalues of a non-self-adjoint operator.

How to cite

top

Costin, Ovidiu, and Costin, Rodica D.. "Failure of analytic hypoellipticity in a class of differential operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.1 (2003): 21-45. <http://eudml.org/doc/84498>.

@article{Costin2003,
abstract = {For the hypoelliptic differential operators $P=\{\partial ^2_ x\}+\left( x^k\partial _ y -x^l\{\partial _t\}\right)^2$ introduced by T. Hoshiro, generalizing a class of M. Christ, in the cases of $k$ and $l$ left open in the analysis, the operators $P$ also fail to be analytic hypoelliptic (except for $(k,l)=(0,1)$), in accordance with Treves’ conjecture. The proof is constructive, suitable for generalization, and relies on evaluating a family of eigenvalues of a non-self-adjoint operator.},
author = {Costin, Ovidiu, Costin, Rodica D.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {21-45},
publisher = {Scuola normale superiore},
title = {Failure of analytic hypoellipticity in a class of differential operators},
url = {http://eudml.org/doc/84498},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Costin, Ovidiu
AU - Costin, Rodica D.
TI - Failure of analytic hypoellipticity in a class of differential operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 1
SP - 21
EP - 45
AB - For the hypoelliptic differential operators $P={\partial ^2_ x}+\left( x^k\partial _ y -x^l{\partial _t}\right)^2$ introduced by T. Hoshiro, generalizing a class of M. Christ, in the cases of $k$ and $l$ left open in the analysis, the operators $P$ also fail to be analytic hypoelliptic (except for $(k,l)=(0,1)$), in accordance with Treves’ conjecture. The proof is constructive, suitable for generalization, and relies on evaluating a family of eigenvalues of a non-self-adjoint operator.
LA - eng
UR - http://eudml.org/doc/84498
ER -

References

top
  1. [1] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. Zbl0156.10701MR222474
  2. [2] M. S. Baouendi – Ch. Goulaouic, Non-analytic hypoellipticity for some degenerate operators, Bull. Amer. Math. Soc. 78 (1972), 483-486. Zbl0276.35023MR296507
  3. [3] M. Christ, Certain sums of squares of vector fields fail to be analytic hypoelliptic, Comm. Partial Differential Equations 16 (1991), 1695-1707. Zbl0762.35017MR1133746
  4. [4] M. Christ, A class of hypoelliptic PDE admitting nonanalytic solutions, Contemp. Math. 137 (1992), 155-167. Zbl0804.35022MR1190978
  5. [5] M. Christ, Analytic hypoellipticity, representations of nilpotent groups, and a nonlinear eigenvalue problem, Duke Math. J. 72, No. 3 (1993), 595-639. Zbl0802.35025MR1253617
  6. [6] M. Christ, A necessary condition for analytic hypoellipticity, Math. Res. Lett. 1 (1994), 241-248. Zbl0841.35026MR1266762
  7. [7] M. Christ, Examples of analytic nonhypoellipticity of ¯ b , Comm. Partial Differential Equations 19, no. 5-6, (1994) 911–941. Zbl0808.35021MR1274545
  8. [8] M. Christ, Analytic hypoellipticity in dimension two, M.S.R.I. Preprint No. 1996-009. MR1453596
  9. [9] M. Christ – D. Geller, Counterexamples to analytic hypoellipticity for domain of finite type, Ann. of Math. 135 (1992), 551-566. Zbl0758.35024MR1166644
  10. [10] M. Derridj – D. S. Tartakoff, Local analyticity for the b problem and the ¯ -Neumann problem at certain weakly pseudoconvex domains, Comm. Partial Differential Equations 12 (1988), 1521-1600. Zbl0736.35070MR970155
  11. [11] M. Derridj – D. S. Tartakoff, Analyticité local pour le problème de ¯ -Neumann en des points de faible pseudoconvexité, C.R. Acad. Sci. Paris Sér. I Math. 306 (1988), 429-432. Zbl0636.32009MR937979
  12. [12] M. Derridj – D. S. Tartakoff, Local analyticity in the ¯ -Neumann problem for some model domains without maximal estimates, Duke Math. J. 64, No. 2 (1991), 377-402. Zbl0790.35078MR1136382
  13. [13] M. Derridj – D. S. Tartakoff, Microlocal analyticity for the canonical solution to ¯ on some rigid weakly pseudoconvex hypersurfaces in 2 , Comm. Partial Differential Equations 20 (1995), 1647-1667. Zbl0833.35100MR1349226
  14. [14] M. Derridj – C. Zuily, Régularité analytique et Gevrey d’opérateurs elliptiques dégénérés, J. Math. Pures Appl. 52 (1973), 65-80. Zbl0263.35020MR390474
  15. [15] G. Francsics – N. Hanges, Analytic Regularity for the Bergman kernel, Journée Equations aux dérivées partielles, Saint-Jean de Monts, 2-5 juin 1998. Zbl1010.32003MR1640378
  16. [16] G. Francsics – N. Hanges, Treves curves and the Szegö kernel, Indiana Univ. Math. J. 47 (1998), 995-1009. Zbl0939.32001MR1665733
  17. [17] G. Francsics – N. Hanges, Analytic singularities of the Bergman kernel for tubes, to appear in Duke Math. J. Zbl1016.32014MR1838661
  18. [18] G. Francsics – N. Hanges, Analytic singularities, Contemp. Math. 205 (1997), 69-78. Zbl0892.32019MR1447216
  19. [19] A. Grigis – J. Sjöstrand, Front d’onde analytique et somme de carres de champes de vecteurs, Duke Math. J. 52 (1985) 35-51. Zbl0581.35009MR791290
  20. [20] N. Hanges – A. A. Himonas, Singular solutions for sums of squares of vector fields, Comm. Partial Differential Equations 16 (1991), 1503-1511. Zbl0745.35011MR1132794
  21. [21] N. Hanges – A. A. Himonas, Singular solutions for a class of Grusin type operators, Proceedings of the AMS 124 (1996), 1549-1557. Zbl0858.35025MR1307525
  22. [22] N. Hanges – A. A. Himonas, Non-analytic hypoellipticity in the presence of symplecticity, Proc. of the Amer. Math. Soc. 126 (1998), 405-409. Zbl0906.35027MR1422872
  23. [23] B. Helffer, Conditions nécessaires d’hypoanalyticité pour des operateurs invariants a gauche homogènes sur un groupe nilpotent gradué, J. Differential Equations 44 (1982), 460-481. Zbl0458.35019MR661164
  24. [24] T. Hoshiro, Failure of analytic hypoellipticity for some operators of X 2 + Y 2 type, J. Math. Kyoto Univ. (JMKYAZ) 35 (1995) 569-581. Zbl0846.35034MR1365248
  25. [25] G. Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. Partial Differential Equations 6 (1980), 1-90. Zbl0455.35040MR597752
  26. [26] G. Métivier, Non-hypoellipticité analytique pour D x 2 + ( x 2 + y 2 ) D y 2 , C.R. Acad. Sci. Paris Sér. I Math. 292 (1981), 401-404. Zbl0481.35033MR609762
  27. [27] Pham The Lai – D. Robert, Sur un problème aux valueurs propres non linèaire, Israel J. Math. 36 (1980), 169-1886. Zbl0444.35065MR623203
  28. [28] J. Sjöstrand, Analytic wavefront sets and operators with multiple characteristics, Hokkaido Math. J. 12 (1983), 392-433. Zbl0531.35022MR725588
  29. [29] D. Tartakoff, On the local real analyticity of solutions to b and the ¯ -problem, Acta Math.145 (1980), 117-204. Zbl0456.35019MR590289
  30. [30] F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the ¯ -problem, Comm. Partial Differential Equations 3 (1978), 475-642. Zbl0384.35055MR492802
  31. [31] F. Treves, Symplectic geometry and analytic hypo-ellipticity, Proc. Symp. Pure Math., Vol. 65 (1999), 201-219. Zbl0938.35038MR1662756
  32. [32] Y. Sibuya, “Global theory of a second order linear ordinary differential equation with a polynomial coefficient”, North-Holland Publ., 1975 Zbl0322.34006MR486867
  33. [33] V. S. Varadarajan, Meromorphic Differential Equations, Expositiones Mathematicae, 9, No. 2 (1991). Zbl0722.34006MR1101951
  34. [34] W. Wasow, “Asymptotic expansions for ordinary differential equations”, New York- London-Sydney, Interscience Publishers, IX, 1965. Zbl0133.35301MR203188
  35. [35] C-C. Yu, Nonlinear eigenvalues and analytic-hypoellipticity, Mem. Amer. Math. Soc. 134, no. 636, viii + 92 pp., 1998. Zbl0913.35100MR1432145

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.