Cofinal types of topological directed orders
SŁawomir Solecki[1]; Stevo Todorcevic
- [1] University of Illinois, Department of mathematics, 1409 W. green st., Urbana IL 61801 (USA), Université Paris VII-CNRS, UMR 7056, 2 place Jussieu, 75251 Paris cedex 05 (France)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 6, page 1877-1911
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSolecki, SŁawomir, and Todorcevic, Stevo. "Cofinal types of topological directed orders." Annales de l’institut Fourier 54.6 (2004): 1877-1911. <http://eudml.org/doc/116163>.
@article{Solecki2004,
abstract = {We investigate the structure of the Tukey ordering among directed orders arising
naturally in topology and measure theory.},
affiliation = {University of Illinois, Department of mathematics, 1409 W. green st., Urbana IL 61801 (USA), Université Paris VII-CNRS, UMR 7056, 2 place Jussieu, 75251 Paris cedex 05 (France)},
author = {Solecki, SŁawomir, Todorcevic, Stevo},
journal = {Annales de l’institut Fourier},
keywords = {Tukey order; analytic ideals; $\sigma $-ideals of compact sets; -ideals of compact sets; Tukey reducibility; measure and category},
language = {eng},
number = {6},
pages = {1877-1911},
publisher = {Association des Annales de l'Institut Fourier},
title = {Cofinal types of topological directed orders},
url = {http://eudml.org/doc/116163},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Solecki, SŁawomir
AU - Todorcevic, Stevo
TI - Cofinal types of topological directed orders
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 1877
EP - 1911
AB - We investigate the structure of the Tukey ordering among directed orders arising
naturally in topology and measure theory.
LA - eng
KW - Tukey order; analytic ideals; $\sigma $-ideals of compact sets; -ideals of compact sets; Tukey reducibility; measure and category
UR - http://eudml.org/doc/116163
ER -
References
top- J.P.R. Christensen, Topology and Borel Structure, (1974), North-Holland/Elsevier Zbl0273.28001MR348724
- I. Farah, Analytic Quotients, Mem. Amer. Math. Soc 148 (2000) Zbl0966.03045MR1711328
- D.H. Fremlin, The partially ordered sets of measure theory and Tukey's ordering, Note di Matematica 11 (1991), 177-214 Zbl0799.06004MR1258546
- D.H. Fremlin, Families of compact sets and Tukey ordering, Atti. Sem. Mat. Fiz 39 (1991), 29-50 Zbl0772.54030MR1111757
- J.R. Isbell, Seven cofinal types, J. London Math. Soc 4 (1972), 651-654 Zbl0238.06001MR294185
- A.S. Kechris, Classical Descriptive Set Theory, (1995), Springer Zbl0819.04002MR1321597
- A.S. Kechris, A. Louveau, W.H. Woodin, The structure of -ideals of compact sets, Trans. Amer. Math. Soc 301 (1987), 263-288 Zbl0633.03043MR879573
- A. Louveau, B. Veli{#x010D;}kovi{#x0107;}, Analytic ideals and cofinal types, Ann. Pure Appl. Logic 99 (1999), 171-195 Zbl0934.03061MR1708151
- S. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), 51-72 Zbl0932.03060MR1708146
- S. Todorcevic, Directed sets and cofinal types, Trans. Amer. Math. Soc 290 (1985), 711-723 Zbl0592.03037MR792822
- S. Todorcevic, A classification of transitive relations on , Proc. London Math. Soc. 73 (1996), 501-533 Zbl0870.04001MR1407459
- S. Todorcevic, Analytic gaps, Fund. Math 150 (1996), 55-66 Zbl0851.04002MR1387957
- S. Todorcevic, Definable ideals and gaps in their quotients, Set Theory (Curacao 1995, Barcelona, 1990) (1998), 213-226, Kluwer, Dordrecht Zbl0894.03026
- J.W. Tukey, Convergence and uniformity in topology, 1 (1940), Princeton U.P Zbl0025.09102MR2515
- S. Zafrany, On analytic filters and prefilters, J. Symb. Logic 55 (1990), 315-322 Zbl0705.03027MR1043560
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.