A convergence on Boolean algebras generalizing the convergence on the Aleksandrov cube
We compare the forcing-related properties of a complete Boolean algebra with the properties of the convergences (the algebraic convergence) and on generalizing the convergence on the Cantor and Aleksandrov cube, respectively. In particular, we show that is a topological convergence iff forcing by does not produce new reals and that is weakly topological if satisfies condition (implied by the -cc). On the other hand, if is a weakly topological convergence, then is a -cc algebra...