Holomorphic submersions from Stein manifolds

Franc Forstnerič[1]

  • [1] Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 6, page 1913-1942
  • ISSN: 0373-0956

Abstract

top
We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.

How to cite

top

Forstnerič, Franc. "Holomorphic submersions from Stein manifolds." Annales de l’institut Fourier 54.6 (2004): 1913-1942. <http://eudml.org/doc/116164>.

@article{Forstnerič2004,
abstract = {We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.},
affiliation = {Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia)},
author = {Forstnerič, Franc},
journal = {Annales de l’institut Fourier},
keywords = {Stein manifolds; holomorphic submersions; Oka principle},
language = {eng},
number = {6},
pages = {1913-1942},
publisher = {Association des Annales de l'Institut Fourier},
title = {Holomorphic submersions from Stein manifolds},
url = {http://eudml.org/doc/116164},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Forstnerič, Franc
TI - Holomorphic submersions from Stein manifolds
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 1913
EP - 1942
AB - We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.
LA - eng
KW - Stein manifolds; holomorphic submersions; Oka principle
UR - http://eudml.org/doc/116164
ER -

References

top
  1. R. Abraham, Transversality in manifolds of mappings., Bull. Amer. Math. Soc. 69 (1963), 470-474 Zbl0171.44501MR149495
  2. W. Barth, C. Peters, A. Van De Ven, Compact Complex Surfaces, (1984), Springer, Berlin--Heidelberg--New Zork--Tokyo Zbl0718.14023MR749574
  3. J.-P Demailly, Cohomology of q -convex spaces in top degrees, Math. Z. 204 (1990), 283-295 Zbl0682.32017MR1055992
  4. F. Docquier, H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. (German), Math. Ann. 140 (1960), 94-123 Zbl0095.28004MR148939
  5. Y. Eliashberg, Topological characterization of Stein manifolds of dimension g t ; 2 , Internat. J. Math 1 (1990), 29-46 Zbl0699.58002MR1044658
  6. Y. Eliashberg, N. Mishachev, Introduction to the h -principle, 48 (2002), Amer. Math. Soc., Providence, RI Zbl1008.58001MR1909245
  7. O. Forster, Plongements des variétés de Stein, Comment. Math. Helv 45 (1970), 170-184 Zbl0184.31403MR269880
  8. F. Forstnerič, Noncritical holomorphic functions on Stein manifolds, Acta Math. 191 (2003), 143-189 Zbl1064.32021MR2051397
  9. F. Forstnerič, The homotopy principle in complex analysis: A survey, Explorations in Complex and Riemannian Geometry: A Volume dedicated to Robert E. Greene 332 (2003), 73-99, American Mathematical Society, Providence Zbl1048.32004
  10. F. Forstnerič, The Oka principle for sections of subelliptic submersions, Math. Z. 241 (2002), 527-551 Zbl1023.32008MR1938703
  11. F. Forstnerič, Runge approximation on convex sets implies the Oka property, (February 2004) Zbl1103.32004
  12. F. Forstnerič, J. Kozak, Strongly pseudoconvex handlebodies., J. Korean Math. Soc. 40 (2003), 727-746 Zbl1044.32025MR1995074
  13. F. Forstnerič, E. Low, N. Øvrelid, Solving the d - and ¯ -equations in thin tubes and applications to mappings., Michigan Math. J. 49 (2001), 369-416 Zbl1016.32018MR1852309
  14. F. Forstnerič, J. Prezelj, Oka's principle for holomorphic fiber bundles with sprays., Math. Ann. 317 (2000), 117-154 Zbl0964.32017MR1760671
  15. F. Forstnerič, J. Prezelj, Oka's principle for holomorphic submersions with sprays., Math. Ann. 322 (2002), 633-666 Zbl1011.32006MR1905108
  16. F. Forstnerič, J. Prezelj, Extending holomorphic sections from complex subvarieties., Math. Z. 236 (2001), 43-68 Zbl0968.32005MR1812449
  17. F. Forstnerič, J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of n ., Invent. Math. 112 (1993), 323-349 Zbl0792.32011MR1213106
  18. H. Grauert, Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen., Math. Ann. 133 (1957), 139-159 Zbl0080.29201MR98197
  19. H. Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen., Math. Ann. 133 (1957), 450-472 Zbl0080.29202MR98198
  20. H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen., Math. Ann. 135 (1958), 263-273 Zbl0081.07401MR98199
  21. M. Gromov, Stable maps of foliations into manifolds., Izv. Akad. Nauk, S.S.S.R 33 (1969), 707-734 Zbl0197.20404MR263103
  22. M. Gromov, Convex integration of differential relations, I, Izv. Akad. Nauk SSSR Ser. Mat (Russian) 37 (1973), 329-343 Zbl0254.58001MR413206
  23. M. Gromov, Partial Differential Relations., 9 (1986), Springer, Berlin--New York Zbl0651.53001MR864505
  24. M. Gromov, Oka's principle for holomorphic sections of elliptic bundles., J. Amer. Math. Soc. 2 (1989), 851-897 Zbl0686.32012MR1001851
  25. R. C. Gunning, R. Narasimhan, Immersion of open Riemann surfaces., Math. Ann. 174 (1967), 103-108 Zbl0179.11402MR223560
  26. R. C. Gunning, H. Rossi, Analytic functions of several complex variables., (1965), Prentice--Hall, Englewood Cliffs Zbl0141.08601MR180696
  27. G. M. Henkin, J. Leiterer, Andreotti-Grauert Theory by Integral Formulas., 74 (1988), Birkhäuser, Boston Zbl0654.32002MR986248
  28. G. M. Henkin, J. Leiterer, The Oka-Grauert principle without induction over the basis dimension., Math. Ann. 311 (1998), 71-93 Zbl0955.32019MR1624267
  29. L. Hörmander, L 2 estimates and existence theorems for the ¯ operator., Acta Math. 113 (1965), 89-152 Zbl0158.11002MR179443
  30. L. Hörmander, An Introduction to Complex Analysis in Several Variables, (1990), North Holland, Amsterdam Zbl0685.32001MR1045639
  31. L. Hörmander, J. Wermer, Uniform approximations on compact sets in n ., Math. Scand 23 (1968), 5-21 Zbl0181.36201MR254275
  32. K. Oka, Sur les fonctions des plusieurs variables. III: Deuxième problème de Cousin., J. Sc. Hiroshima Univ. 9 (1939), 7-19 Zbl0020.24002
  33. A. Phillips, Submersions of open manifolds., Topology 6 (1967), 170-206 Zbl0204.23701MR208611
  34. R. M. Range, Y. T. Siu, k approximation by holomorphic functions and ¯ -closed forms on k submanifolds of a complex manifold., Math. Ann. 210 (1974), 105-122 Zbl0275.32008MR350068
  35. J.-P. Rosay, A counterexample related to Hartog’s phenomenon (a question by E. Chirka)., Michigan Math. J. 45 (1998), 529-535 Zbl0960.32020MR1653267
  36. J.-T. Siu, Every Stein subvariety admits a Stein neighborhood., Invent. Math. 38 (1976), 89-100 Zbl0343.32014MR435447
  37. J. Winkelman, The Oka-principle for mappings between Riemann surfaces., Enseign. Math. (2) 39 (1993), 143-151 Zbl0783.30031MR1225261
  38. F. Forstnerič, J.-P. Rosay, Approximation of biholomorphic mappings by automorphisms of n , Invent. Math. (Erratum) 118 (1994), 573-574 Zbl0808.32017MR1296357
  39. M. Gromov, Convex integration of differential relations, I, Math. USSR--Izv. (English translation) 7 (1973), 329-343 Zbl0281.58004MR413206

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.