Extending holomorphic mappings from subvarieties in Stein manifolds
- [1] Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 3, page 733-751
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topForstneric, Franc. "Extending holomorphic mappings from subvarieties in Stein manifolds." Annales de l’institut Fourier 55.3 (2005): 733-751. <http://eudml.org/doc/116206>.
@article{Forstneric2005,
abstract = {Suppose that $Y$ is a complex manifold such that any holomorphic map from a compact
convex set in a Euclidean space $\{\mathbb \{C\}\}^n$ to $Y$ is a uniform limit of entire maps
$\{\mathbb \{C\}\}^n\rightarrow Y$. We prove that a holomorphic map $X_0 \rightarrow Y$ from a closed complex
subvariety $X_0$ in a Stein manifold $X$ admits a holomorphic extension $X\rightarrow Y$ provided
that it admits a continuous extension. We then establish the equivalence of four Oka-type
properties of a complex manifold.},
affiliation = {Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia)},
author = {Forstneric, Franc},
journal = {Annales de l’institut Fourier},
keywords = {Stein manifold; holomorphic mappings; Oka property; holomorphic map; convex approximation property},
language = {eng},
number = {3},
pages = {733-751},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extending holomorphic mappings from subvarieties in Stein manifolds},
url = {http://eudml.org/doc/116206},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Forstneric, Franc
TI - Extending holomorphic mappings from subvarieties in Stein manifolds
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 733
EP - 751
AB - Suppose that $Y$ is a complex manifold such that any holomorphic map from a compact
convex set in a Euclidean space ${\mathbb {C}}^n$ to $Y$ is a uniform limit of entire maps
${\mathbb {C}}^n\rightarrow Y$. We prove that a holomorphic map $X_0 \rightarrow Y$ from a closed complex
subvariety $X_0$ in a Stein manifold $X$ admits a holomorphic extension $X\rightarrow Y$ provided
that it admits a continuous extension. We then establish the equivalence of four Oka-type
properties of a complex manifold.
LA - eng
KW - Stein manifold; holomorphic mappings; Oka property; holomorphic map; convex approximation property
UR - http://eudml.org/doc/116206
ER -
References
top- R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219 Zbl0416.32013MR470252
- G. Buzzard, S.S.Y. Lu, Algebraic surfaces holomorphically dominable by , Invent. Math. 139 (2000), 617-659 Zbl0967.14025MR1738063
- J. Carlson, P. Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. Math. 95 (1972), 557-584 Zbl0248.32018MR311935
- M. Coltoiu, Complete locally pluripolar sets, J. Reine Angew. Math. 412 (1990), 108-112 Zbl0711.32008MR1074376
- M. Coltoiu, N. Mihalache, On the homology groups of Stein spaces and Runge pairs, J. Reine Angew. Math. 371 (1986), 216-220 Zbl0587.32026MR859326
- J.-P. Demailly, Cohomology of -convex spaces in top degrees, Math. Z. 204 (1990), 283-295 Zbl0682.32017MR1055992
- F. Docquier, H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123 Zbl0095.28004MR148939
- D. Eisenman, Intrinsic measures on complex manifolds and holomorphic mappings, 96 (1970), American Mathematical Society, Providence, R.I. Zbl0197.05901MR259165
- F. Forstneric, The Oka principle for sections of subelliptic submersions, Math. Z. 241 (2002), 527-551 Zbl1023.32008MR1938703
- F. Forstneric, Noncritical holomorphic functions on Stein manifolds, Acta Math. 191 (2003), 143-189 Zbl1064.32021MR2051397
- F. Forstneric, The homotopy principle in complex analysis: A survey, 332 (2003), American Mathematical Society Zbl1048.32004MR2016091
- F. Forstneric, Holomorphic submersions from Stein manifolds, Ann. Inst. Fourier 54 (2004), 1913-1942 Zbl1093.32003MR2134229
- F. Forstneric, Runge approximation on convex sets implies Oka's property, (2004)
- F. Forstneric, Holomorphic flexibility properties of complex manifolds, (2004) Zbl1171.32303
- F. Forstneric, J. Prezelj, Oka's principle for holomorphic fiber bundles with sprays, Math. Ann. 317 (2000), 117-154 Zbl0964.32017MR1760671
- Forstneric, J. Prezelj, Oka's principle for holomorphic submersions with sprays, Math. Ann. 322 (2002), 633-666 Zbl1011.32006MR1905108
- Forstneric, J. Prezelj, Extending holomorphic sections from complex subvarieties, Math. Z. 236 (2001), 43-68 Zbl0968.32005MR1812449
- H. Grauert, Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann. 133 (1957), 139-159 Zbl0080.29201MR98197
- H. Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann. 133 (1957), 450-472 Zbl0080.29202MR98198
- H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263-273 Zbl0081.07401MR98199
- M. Gromov, Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), 851-897 Zbl0686.32012MR1001851
- R. C. Gunning, H. Rossi, Analytic functions of several complex variables, (1965), Prentice--Hall, Englewood Cliffs Zbl0141.08601MR180696
- G. Henkin, J. Leiterer, Andreotti-Grauert Theory by Integral Formulas, 74 (1988), Birkhäuser, Boston Zbl0654.32001MR986248
- G. Henkin, J. Leiterer, The Oka-Grauert principle without induction over the basis dimension, Math. Ann. 311 (1998), 71-93 Zbl0955.32019MR1624267
- L. Hörmander, An Introduction to Complex Analysis in Several Variables, (1990), Third ed. North Holland, Amsterdam Zbl0685.32001MR1045639
- S. Kobayashi, Intrinsic distances, measures and geometric function theory, 82 (1976), 357-416 Zbl0346.32031MR414940
- S. Kobayashi, T. Ochiai, Meromorphic mappings onto compact complex spaces of general type, Invent. Math. 31 (1975), 7-16 Zbl0331.32020MR402127
- K. Kodaira, Holomorphic mappings of polydiscs into compact complex manifolds, J. Diff. Geom. 6 (1971-72), 33-46 Zbl0227.32008MR301228
- F. Lárusson, Mapping cylinders and the Oka principle, (2004) Zbl1052.32020
- R. Narasimhan, The Levi problem for complex spaces, Math. Ann. 142 (1961), 355-365 Zbl0106.28603MR148943
- M. Peternell, Algebraische Varietäten und -vollständige komplexe Räume, Math. Z. 200 (1989), 547-581 Zbl0675.32014MR987586
- R. Richberg, Stetige streng pseudoconvexe Funktionen, Math. Ann. 175 (1968), 257-286 Zbl0153.15401MR222334
- J.-T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100 Zbl0343.32014MR435447
- G. W. Whitehead, Elements of Homotopy Theory, 61 (1978), Springer-Verlag Zbl0406.55001MR516508
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.