Extending holomorphic mappings from subvarieties in Stein manifolds

Franc Forstneric[1]

  • [1] Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 3, page 733-751
  • ISSN: 0373-0956

Abstract

top
Suppose that Y is a complex manifold such that any holomorphic map from a compact convex set in a Euclidean space n to Y is a uniform limit of entire maps n Y . We prove that a holomorphic map X 0 Y from a closed complex subvariety X 0 in a Stein manifold X admits a holomorphic extension X Y provided that it admits a continuous extension. We then establish the equivalence of four Oka-type properties of a complex manifold.

How to cite

top

Forstneric, Franc. "Extending holomorphic mappings from subvarieties in Stein manifolds." Annales de l’institut Fourier 55.3 (2005): 733-751. <http://eudml.org/doc/116206>.

@article{Forstneric2005,
abstract = {Suppose that $Y$ is a complex manifold such that any holomorphic map from a compact convex set in a Euclidean space $\{\mathbb \{C\}\}^n$ to $Y$ is a uniform limit of entire maps $\{\mathbb \{C\}\}^n\rightarrow Y$. We prove that a holomorphic map $X_0 \rightarrow Y$ from a closed complex subvariety $X_0$ in a Stein manifold $X$ admits a holomorphic extension $X\rightarrow Y$ provided that it admits a continuous extension. We then establish the equivalence of four Oka-type properties of a complex manifold.},
affiliation = {Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia)},
author = {Forstneric, Franc},
journal = {Annales de l’institut Fourier},
keywords = {Stein manifold; holomorphic mappings; Oka property; holomorphic map; convex approximation property},
language = {eng},
number = {3},
pages = {733-751},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extending holomorphic mappings from subvarieties in Stein manifolds},
url = {http://eudml.org/doc/116206},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Forstneric, Franc
TI - Extending holomorphic mappings from subvarieties in Stein manifolds
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 733
EP - 751
AB - Suppose that $Y$ is a complex manifold such that any holomorphic map from a compact convex set in a Euclidean space ${\mathbb {C}}^n$ to $Y$ is a uniform limit of entire maps ${\mathbb {C}}^n\rightarrow Y$. We prove that a holomorphic map $X_0 \rightarrow Y$ from a closed complex subvariety $X_0$ in a Stein manifold $X$ admits a holomorphic extension $X\rightarrow Y$ provided that it admits a continuous extension. We then establish the equivalence of four Oka-type properties of a complex manifold.
LA - eng
KW - Stein manifold; holomorphic mappings; Oka property; holomorphic map; convex approximation property
UR - http://eudml.org/doc/116206
ER -

References

top
  1. R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219 Zbl0416.32013MR470252
  2. G. Buzzard, S.S.Y. Lu, Algebraic surfaces holomorphically dominable by 2 , Invent. Math. 139 (2000), 617-659 Zbl0967.14025MR1738063
  3. J. Carlson, P. Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. Math. 95 (1972), 557-584 Zbl0248.32018MR311935
  4. M. Coltoiu, Complete locally pluripolar sets, J. Reine Angew. Math. 412 (1990), 108-112 Zbl0711.32008MR1074376
  5. M. Coltoiu, N. Mihalache, On the homology groups of Stein spaces and Runge pairs, J. Reine Angew. Math. 371 (1986), 216-220 Zbl0587.32026MR859326
  6. J.-P. Demailly, Cohomology of q -convex spaces in top degrees, Math. Z. 204 (1990), 283-295 Zbl0682.32017MR1055992
  7. F. Docquier, H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123 Zbl0095.28004MR148939
  8. D. Eisenman, Intrinsic measures on complex manifolds and holomorphic mappings, 96 (1970), American Mathematical Society, Providence, R.I. Zbl0197.05901MR259165
  9. F. Forstneric, The Oka principle for sections of subelliptic submersions, Math. Z. 241 (2002), 527-551 Zbl1023.32008MR1938703
  10. F. Forstneric, Noncritical holomorphic functions on Stein manifolds, Acta Math. 191 (2003), 143-189 Zbl1064.32021MR2051397
  11. F. Forstneric, The homotopy principle in complex analysis: A survey, 332 (2003), American Mathematical Society Zbl1048.32004MR2016091
  12. F. Forstneric, Holomorphic submersions from Stein manifolds, Ann. Inst. Fourier 54 (2004), 1913-1942 Zbl1093.32003MR2134229
  13. F. Forstneric, Runge approximation on convex sets implies Oka's property, (2004) 
  14. F. Forstneric, Holomorphic flexibility properties of complex manifolds, (2004) Zbl1171.32303
  15. F. Forstneric, J. Prezelj, Oka's principle for holomorphic fiber bundles with sprays, Math. Ann. 317 (2000), 117-154 Zbl0964.32017MR1760671
  16. Forstneric, J. Prezelj, Oka's principle for holomorphic submersions with sprays, Math. Ann. 322 (2002), 633-666 Zbl1011.32006MR1905108
  17. Forstneric, J. Prezelj, Extending holomorphic sections from complex subvarieties, Math. Z. 236 (2001), 43-68 Zbl0968.32005MR1812449
  18. H. Grauert, Approximationssätze für holomorphe Funktionen mit Werten in komplexen Räumen, Math. Ann. 133 (1957), 139-159 Zbl0080.29201MR98197
  19. H. Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann. 133 (1957), 450-472 Zbl0080.29202MR98198
  20. H. Grauert, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann. 135 (1958), 263-273 Zbl0081.07401MR98199
  21. M. Gromov, Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), 851-897 Zbl0686.32012MR1001851
  22. R. C. Gunning, H. Rossi, Analytic functions of several complex variables, (1965), Prentice--Hall, Englewood Cliffs Zbl0141.08601MR180696
  23. G. Henkin, J. Leiterer, Andreotti-Grauert Theory by Integral Formulas, 74 (1988), Birkhäuser, Boston Zbl0654.32001MR986248
  24. G. Henkin, J. Leiterer, The Oka-Grauert principle without induction over the basis dimension, Math. Ann. 311 (1998), 71-93 Zbl0955.32019MR1624267
  25. L. Hörmander, An Introduction to Complex Analysis in Several Variables, (1990), Third ed. North Holland, Amsterdam Zbl0685.32001MR1045639
  26. S. Kobayashi, Intrinsic distances, measures and geometric function theory, 82 (1976), 357-416 Zbl0346.32031MR414940
  27. S. Kobayashi, T. Ochiai, Meromorphic mappings onto compact complex spaces of general type, Invent. Math. 31 (1975), 7-16 Zbl0331.32020MR402127
  28. K. Kodaira, Holomorphic mappings of polydiscs into compact complex manifolds, J. Diff. Geom. 6 (1971-72), 33-46 Zbl0227.32008MR301228
  29. F. Lárusson, Mapping cylinders and the Oka principle, (2004) Zbl1052.32020
  30. R. Narasimhan, The Levi problem for complex spaces, Math. Ann. 142 (1961), 355-365 Zbl0106.28603MR148943
  31. M. Peternell, Algebraische Varietäten und q -vollständige komplexe Räume, Math. Z. 200 (1989), 547-581 Zbl0675.32014MR987586
  32. R. Richberg, Stetige streng pseudoconvexe Funktionen, Math. Ann. 175 (1968), 257-286 Zbl0153.15401MR222334
  33. J.-T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100 Zbl0343.32014MR435447
  34. G. W. Whitehead, Elements of Homotopy Theory, 61 (1978), Springer-Verlag Zbl0406.55001MR516508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.