Symbolic discrepancy and self-similar dynamics

Boris Adamczewski[1]

  • [1] Université Lyon-I, bât Braconnier, Institut Gérard Desargues, CNRS, 21 avenue Claude Bernard, 69622 Villeurbanne Cedex (France)

Annales de l'Institut Fourier (2004)

  • Volume: 54, Issue: 7, page 2201-2234
  • ISSN: 0373-0956

Abstract

top
We consider subshifts arising from primitive substitutions, which are known to be uniquely ergodic dynamical systems. In order to precise this point, we introduce a symbolic notion of discrepancy. We show how the distribution of such a subshift is in part ruled by the spectrum of the incidence matrices associated with the underlying substitution. We also give some applications of these results in connection with the spectral study of substitutive dynamical systems.

How to cite

top

Adamczewski, Boris. "Symbolic discrepancy and self-similar dynamics." Annales de l'Institut Fourier 54.7 (2004): 2201-2234. <http://eudml.org/doc/116172>.

@article{Adamczewski2004,
abstract = {We consider subshifts arising from primitive substitutions, which are known to be uniquely ergodic dynamical systems. In order to precise this point, we introduce a symbolic notion of discrepancy. We show how the distribution of such a subshift is in part ruled by the spectrum of the incidence matrices associated with the underlying substitution. We also give some applications of these results in connection with the spectral study of substitutive dynamical systems.},
affiliation = {Université Lyon-I, bât Braconnier, Institut Gérard Desargues, CNRS, 21 avenue Claude Bernard, 69622 Villeurbanne Cedex (France)},
author = {Adamczewski, Boris},
journal = {Annales de l'Institut Fourier},
keywords = {Discrepancy; substitutions; subshifts; bounded remainder sets; self-similar dynamics; discrepancy; morphisms},
language = {eng},
number = {7},
pages = {2201-2234},
publisher = {Association des Annales de l'Institut Fourier},
title = {Symbolic discrepancy and self-similar dynamics},
url = {http://eudml.org/doc/116172},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Adamczewski, Boris
TI - Symbolic discrepancy and self-similar dynamics
JO - Annales de l'Institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 7
SP - 2201
EP - 2234
AB - We consider subshifts arising from primitive substitutions, which are known to be uniquely ergodic dynamical systems. In order to precise this point, we introduce a symbolic notion of discrepancy. We show how the distribution of such a subshift is in part ruled by the spectrum of the incidence matrices associated with the underlying substitution. We also give some applications of these results in connection with the spectral study of substitutive dynamical systems.
LA - eng
KW - Discrepancy; substitutions; subshifts; bounded remainder sets; self-similar dynamics; discrepancy; morphisms
UR - http://eudml.org/doc/116172
ER -

References

top
  1. B. Adamczewski, Codages de rotations et phénomènes d'autosimilarité, J. Théor. Nombres Bordeaux 14 (2002), 351-386 Zbl1113.37003MR2040682
  2. B. Adamczewski, Répartitions des suites ( n α ) n et substitutions, Acta Arith. 112 (2004), 1-22 Zbl1060.11043MR2040589
  3. M.D. Boshernitzan, C.R. Carroll, An extension of Lagrange's theorem to interval exchange transformations over quadratic fields, J. Anal. Math. 72 (1997), 21-44 Zbl0931.28013MR1482988
  4. J. Brillhart, P. Erdős, P. Morton, On sums of Rudin-Shapiro coefficients II, Pacific J. Math. 107 (1983), 39-69 Zbl0469.10034MR701806
  5. J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983), 107-115 Zbl0528.10006MR707350
  6. F.M. Dekking, On the distribution of digits in arithmetic sequences, Seminar on number theory, 1982-1983 (Talence, 1982/1983) exp. no 32 (1983), 1-12, Université Bordeaux I, Talence Zbl0529.10047
  7. M. Drmota, R.F. Tichy, Sequences, discrepancies and applications, (1997), Springer-Verlag, Berlin Zbl0877.11043MR1470456
  8. J.-M. Dumont, A. Thomas., Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci. 65 (1989), 153-169 Zbl0679.10010MR1020484
  9. J.-M. Dumont, A. Thomas, Digital sum problems and substitutions on a finite alphabet, J. Number Theory 39 (1991), 351-366 Zbl0736.11007MR1133561
  10. F. Durand, A characterization of substitutive sequences using return words, Discrete Math. 179 (1998), 89-101 Zbl0895.68087MR1489074
  11. F. Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Systems 20 (2000), 1061-1078 Zbl0965.37013MR1779393
  12. F. Durand, Combinatorial and dynamical study of substitutions around the theorem of cobham, Dynamics and Randomness, Nonlinear Phenomena and Complex Systems (2002), 53-94, Kluwer Acad. Publications Zbl1038.11016
  13. H. Furstenberg, H. Keynes, L. Shapiro, Prime flows in topological dynamics, Israel J. Math. 14 (1973), 26-38 Zbl0264.54030MR321055
  14. G. Halász, Remarks on the remainder in Birkhoff's ergodic theorem, Acta Math. Acad. Sci. Hungar. 28 (1976), 389-395 Zbl0336.28005MR425076
  15. C. Holton, L.Q. Zamboni, Geometric realizations of substitutions, Bull. Soc. Math. France 126 (1998), 149-179 Zbl0931.11004MR1675970
  16. H. Kesten, On a conjecture of Erdős and Szüsz related to uniform distribution m o d 1 , Acta Arith. 12 (1966/1967), 193-212 Zbl0144.28902MR209253
  17. L. Kuipers, H. Niederreiter, Uniform distribution of sequences, (1974), Wiley-Interscience, New York Zbl0281.10001MR419394
  18. D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, (1995), Cambridge University Press, Cambridge Zbl1106.37301MR1369092
  19. P. Michel, Stricte ergodicité d'ensembles minimaux de substitution, C. R. Acad. Sci. Paris Sér. A 278 (1974), 811-813 Zbl0274.60028MR362276
  20. K. Petersen, On a series of cosecants related to a problem in ergodic theory, Compos. Math. 26 (1973), 313-317 Zbl0269.10030MR325927
  21. M. Queffélec., Substitution dynamical systems - Spectral analysis, 1294 (1987), Springer-Verlag, Berlin Zbl0642.28013MR924156
  22. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178 Zbl0522.10032MR667748
  23. G. Rauzy, Sequences defined by iterated morphisms, Sequences (Naples/Positano, 1988) (1990), 275-286, Springer, New York Zbl0955.28501
  24. A. Siegel, Représentation géométrique, combinatoire et arithmétique des systèmes substitutifs de type Pisot, (2000) 
  25. N.B. Slater, Gaps and steps for the sequence n θ mod 1 , Proc. Cambridge Philos. Soc. 63 (1967), 1115-1123 Zbl0178.04703MR217019
  26. B. Solomyak, On the spectral theory of adic transformations, Representation theory and dynamical systems (1992), 217-230, Amer. Math. Soc., Providence, RI Zbl0770.28012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.