Page 1 Next

Displaying 1 – 20 of 169

Showing per page

A generalization of NUT digital (0,1)-sequences and best possible lower bounds for star discrepancy

Henri Faure, Friedrich Pillichshammer (2013)

Acta Arithmetica

In uniform distribution theory, discrepancy is a quantitative measure for the irregularity of distribution of a sequence modulo one. At the moment the concept of digital (t,s)-sequences as introduced by Niederreiter provides the most powerful constructions of s-dimensional sequences with low discrepancy. In one dimension, recently Faure proved exact formulas for different notions of discrepancy for the subclass of NUT digital (0,1)-sequences. It is the aim of this paper to generalize the concept...

An improved result on irregularities in distribution of sequences of integers

John H. Hodges (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In 1972 the author used a result of K.F. Roth on irregularities in distribution of sequences of real numbers to prove an analogous result related to the distribution of sequences of integers in prescribed residue classes. Here, a 1972 result of W.M. Schmidt, which is an improvement of Roth's result, is used to obtain an improved result for sequences of integers.

Currently displaying 1 – 20 of 169

Page 1 Next