Coherent sheaves with parabolic structure and construction of Hecke eigensheaves for some ramified local systems

Jochen Heinloth[1]

  • [1] Universität Göttingen, Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen (Allemagne)

Annales de l'Institut Fourier (2004)

  • Volume: 54, Issue: 7, page 2235-2325
  • ISSN: 0373-0956

Abstract

top
The aim of these notes is to generalize Laumon’s construction [20] of automorphic sheaves corresponding to local systems on a smooth, projective curve C to the case of local systems with indecomposable unipotent ramification at a finite set of points. To this end we need an extension of the notion of parabolic structure on vector bundles to coherent sheaves. Once we have defined this, a lot of arguments from the article “ On the geometric Langlands conjecture” by Frenkel, Gaitsgory and Vilonen [11] carry over to our situation. We show that our sheaves descend to the moduli space of parabolic bundles if the rank is 3 and that the general case can be deduced form a generalization of the vanishing conjecture of [11]

How to cite

top

Heinloth, Jochen. "Coherent sheaves with parabolic structure and construction of Hecke eigensheaves for some ramified local systems." Annales de l'Institut Fourier 54.7 (2004): 2235-2325. <http://eudml.org/doc/116173>.

@article{Heinloth2004,
abstract = {The aim of these notes is to generalize Laumon’s construction [20] of automorphic sheaves corresponding to local systems on a smooth, projective curve $C$ to the case of local systems with indecomposable unipotent ramification at a finite set of points. To this end we need an extension of the notion of parabolic structure on vector bundles to coherent sheaves. Once we have defined this, a lot of arguments from the article “ On the geometric Langlands conjecture” by Frenkel, Gaitsgory and Vilonen [11] carry over to our situation. We show that our sheaves descend to the moduli space of parabolic bundles if the rank is $\le 3$ and that the general case can be deduced form a generalization of the vanishing conjecture of [11]},
affiliation = {Universität Göttingen, Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen (Allemagne)},
author = {Heinloth, Jochen},
journal = {Annales de l'Institut Fourier},
keywords = {parabolic vector bundles; automorphic sheaves; geometric Langlands correspondence},
language = {eng},
number = {7},
pages = {2235-2325},
publisher = {Association des Annales de l'Institut Fourier},
title = {Coherent sheaves with parabolic structure and construction of Hecke eigensheaves for some ramified local systems},
url = {http://eudml.org/doc/116173},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Heinloth, Jochen
TI - Coherent sheaves with parabolic structure and construction of Hecke eigensheaves for some ramified local systems
JO - Annales de l'Institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 7
SP - 2235
EP - 2325
AB - The aim of these notes is to generalize Laumon’s construction [20] of automorphic sheaves corresponding to local systems on a smooth, projective curve $C$ to the case of local systems with indecomposable unipotent ramification at a finite set of points. To this end we need an extension of the notion of parabolic structure on vector bundles to coherent sheaves. Once we have defined this, a lot of arguments from the article “ On the geometric Langlands conjecture” by Frenkel, Gaitsgory and Vilonen [11] carry over to our situation. We show that our sheaves descend to the moduli space of parabolic bundles if the rank is $\le 3$ and that the general case can be deduced form a generalization of the vanishing conjecture of [11]
LA - eng
KW - parabolic vector bundles; automorphic sheaves; geometric Langlands correspondence
UR - http://eudml.org/doc/116173
ER -

References

top
  1. D. Abramovich, A. Corti, A. Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003), 3547-3618 Zbl1077.14034MR2007376
  2. M. Artin, A. Grothendieck, J.-L. Verdier, SGA 4: Théorie des topos et cohomologie étale des schémas, t. 3 (1973), Springer-Verlag MR354654
  3. K. Behrend, B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), 45-88 Zbl0909.14006MR1437495
  4. A.A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1983) Zbl0536.14011
  5. A. Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233-259 Zbl0334.22012MR444849
  6. J.-L. Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformation de Fourier et sommes trigonométriques, Astérisque 140-141 (1986), 3-134 Zbl0624.32009MR864073
  7. P. Deligne, La conjecture de Weil II, Publ. Math. IHÉS 52 (1980), 137-252 Zbl0456.14014MR601520
  8. V.G. Drinfeld, Two-dimensional -adic representations of the fundamental group of a curve over a finite field and automorphic forms on GL(2), Amer. J. Math. 105 (1983), 85-114 Zbl0536.14014MR692107
  9. V.G. Drinfeld, Two-dimensional -adic representations of the galois group of a global field of characteristic p and automorphic forms on GL(2), J. Sov. Math. 36 (1987), 93-105 Zbl0609.12010
  10. E. Frenkel, D. Gaitsgory, D. Kazhdan, K. Vilonen, Geometric realization of Whittaker functions and the geometric Langlands conjecture, J. Amer. Math. Soc. 11 (1998), 451-484 Zbl1068.11501MR1484882
  11. E. Frenkel, D. Gaitsgory, K. Vilonen., On the geometric Langlands conjecture, J. Amer. Math. Soc. 15 (2002), 367-417 Zbl1071.11039MR1887638
  12. W. Fulton, J. Harris, Representation Theory - A First Course, 129 (1991), Springer-Verlag Zbl0744.22001MR1153249
  13. D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence Zbl1129.11050
  14. M. Goresky, R. MacPherson, Intersection homology II, Invent. Math. 72 (1983), 77-129 Zbl0529.55007MR696691
  15. A. Grothendieck, Technique de descente et théorèmes d'existence en géométrie algébrique. IV: Les schémas de Hilbert, Séminaire Bourbaki 13 (1960), 1-221 Zbl0236.14003
  16. A. Grothendieck, Eléments de Géométrie Algébrique III : Étude cohomologique des faisceaux cohérents, Publ. Math. IHÉS 11 (1961) Zbl0118.36206
  17. A. Grothendieck, SGA 5 : Cohomologie -adique et fonctions L , (1977), Springer-Verlag Zbl0407.18008MR463174
  18. L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), 1-241 Zbl1038.11075MR1875184
  19. G. Laumon, Faisceaux automorphes pour G L ( n ) : la première construction de Drinfeld 
  20. G. Laumon, Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J. 54 (1987), 309-359 Zbl0662.12013MR899400
  21. G. Laumon, Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Publ. Math. IHÉS 65 (1987), 131-210 Zbl0641.14009MR908218
  22. G. Laumon, Cohomology of Drinfeld modular varieties II, (1997), Cambridge University Press Zbl0870.14016MR1439250
  23. G. Laumon, Travaux de Frenkel, Gaitsgory et Vilonen sur la correspondance de Drinfeld-Langlands, Séminaire Bourbaki 906 (2002) Zbl1161.11360MR2074060
  24. G. Laumon, L. Moret-Bailly, Champs algébriques, 3 (2000), Springer-Verlag Zbl0945.14005MR1771927
  25. J.A. Shalika, The multiplicity one theorem for G L n , Ann. of Math. 100 (1974), 171-193 Zbl0316.12010MR348047
  26. A. Grothendieck, Eléments de Géométrie Algébrique III : Etude cohomologique des faisceaux cohérents, Publ. Math. IHES 17 (1963) Zbl0122.16102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.