An almost complex version of a theorem by Green
Julien Duval[1]
- [1] Université Paul Sabatier, laboratoire Émile Picard, UMR CNRS 5580, 31062 Toulouse Cedex 4 (France)
Annales de l'Institut Fourier (2004)
- Volume: 54, Issue: 7, page 2357-2367
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Audin, J. Lafontaine ed., Holomorphic curves in symplectic geometry, 117 (1994), Birkhäuser, Basel Zbl0802.53001MR1274923
- F. Berteloot, J. Duval, Sur l'hyperbolicité de certains complémentaires, Ens. Math 47 (2001), 253-267 Zbl1009.32015MR1876928
- R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219 Zbl0416.32013MR470252
- R. Debalme, S. Ivashkovich, Complete hyperbolic neighborhoods in almost-complex surfaces, Int. J. of Math 12 (2001), 211-221 Zbl1110.32306MR1823575
- M. Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43-75 Zbl0301.32022MR367302
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347 Zbl0592.53025
- S. Kobayashi, Hyperbolic complex spaces, 318 (1998), Springer, Berlin Zbl0917.32019MR1635983
- B. Kruglikov, M. Overholt, Pseudoholomorphic mappings and Kobayashi hyperbolicity, Diff. Geom. Appl. 11 (1999), 265-277 Zbl0954.32019MR1726542
- O. Lehto, K.I. Virtanen, Quasiconformal mappings in the plane, 126 (1973), Springer, Berlin Zbl0267.30016MR344463
- J.-C. Sikorav, Dual elliptic planes, (2000) Zbl1072.32018MR2145943