Non-Kähler compact complex manifolds associated to number fields

Karl Oeljeklaus[1]; Matei Toma

  • [1] Université d'Aix-Marseille I, LATP-UMR(CNRS) 6632, CMI, 39, rue Joliot-Curie, 13453 Marseille Cedex 13 (France), Institute of Mathematics of the Romanian Academy, Bucharest, 014700 (Roumanie)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 1, page 161-171
  • ISSN: 0373-0956

Abstract

top
For algebraic number fields K with s > 0 real and 2 t > 0 complex embeddings and “admissible” subgroups U of the multiplicative group of integer units of K we construct and investigate certain ( s + t ) -dimensional compact complex manifolds X ( K , U ) . We show among other things that such manifolds are non-Kähler but admit locally conformally Kähler metrics when t = 1 . In particular we disprove a conjecture of I. Vaisman.

How to cite

top

Oeljeklaus, Karl, and Toma, Matei. "Non-Kähler compact complex manifolds associated to number fields." Annales de l’institut Fourier 55.1 (2005): 161-171. <http://eudml.org/doc/116182>.

@article{Oeljeklaus2005,
abstract = {For algebraic number fields $K$ with $s&gt;0$ real and $2t&gt;0$ complex embeddings and “admissible” subgroups $U$ of the multiplicative group of integer units of $K$ we construct and investigate certain $(s+t)$-dimensional compact complex manifolds $X(K,U)$. We show among other things that such manifolds are non-Kähler but admit locally conformally Kähler metrics when $t=1$. In particular we disprove a conjecture of I. Vaisman.},
affiliation = {Université d'Aix-Marseille I, LATP-UMR(CNRS) 6632, CMI, 39, rue Joliot-Curie, 13453 Marseille Cedex 13 (France), Institute of Mathematics of the Romanian Academy, Bucharest, 014700 (Roumanie)},
author = {Oeljeklaus, Karl, Toma, Matei},
journal = {Annales de l’institut Fourier},
keywords = {Compact complex manifolds; algebraic number fields; algebraic units; locally conformally Kähler metrics; compact complex manifold; algebraic number field; locally conformal Kähler metric},
language = {eng},
number = {1},
pages = {161-171},
publisher = {Association des Annales de l'Institut Fourier},
title = {Non-Kähler compact complex manifolds associated to number fields},
url = {http://eudml.org/doc/116182},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Oeljeklaus, Karl
AU - Toma, Matei
TI - Non-Kähler compact complex manifolds associated to number fields
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 1
SP - 161
EP - 171
AB - For algebraic number fields $K$ with $s&gt;0$ real and $2t&gt;0$ complex embeddings and “admissible” subgroups $U$ of the multiplicative group of integer units of $K$ we construct and investigate certain $(s+t)$-dimensional compact complex manifolds $X(K,U)$. We show among other things that such manifolds are non-Kähler but admit locally conformally Kähler metrics when $t=1$. In particular we disprove a conjecture of I. Vaisman.
LA - eng
KW - Compact complex manifolds; algebraic number fields; algebraic units; locally conformally Kähler metrics; compact complex manifold; algebraic number field; locally conformal Kähler metric
UR - http://eudml.org/doc/116182
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.