Weights in cohomology and the Eilenberg-Moore spectral sequence

Matthias Franz[1]; Andrzej Weber

  • [1] Université de Genève, section de Mathématiques, CP 240, 1211 Genève 24 (Switzerland), Uniwersytet Warszawski, Instytut Matematyki, ul. Banacha 2, 02-097 Warszawa (POLAND)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 2, page 673-691
  • ISSN: 0373-0956

Abstract

top
We show that in the category of complex algebraic varieties, the Eilenberg–Moore spectral sequence can be endowed with a weight filtration. This implies that it degenerates if all spaces involved have pure cohomology. As application, we compute the rational cohomology of an algebraic G -variety X ( G being a connected algebraic group) in terms of its equivariant cohomology provided that H G * ( X ) is pure. This is the case, for example, if X is smooth and has only finitely many orbits. We work in the category of mixed sheaves; therefore our results apply equally to (equivariant) intersection homology.

How to cite

top

Franz, Matthias, and Weber, Andrzej. "Weights in cohomology and the Eilenberg-Moore spectral sequence." Annales de l’institut Fourier 55.2 (2005): 673-691. <http://eudml.org/doc/116202>.

@article{Franz2005,
abstract = {We show that in the category of complex algebraic varieties, the Eilenberg–Moore spectral sequence can be endowed with a weight filtration. This implies that it degenerates if all spaces involved have pure cohomology. As application, we compute the rational cohomology of an algebraic $G$-variety $X$ ($G$ being a connected algebraic group) in terms of its equivariant cohomology provided that $H_G^*(X)$ is pure. This is the case, for example, if $X$ is smooth and has only finitely many orbits. We work in the category of mixed sheaves; therefore our results apply equally to (equivariant) intersection homology.},
affiliation = {Université de Genève, section de Mathématiques, CP 240, 1211 Genève 24 (Switzerland), Uniwersytet Warszawski, Instytut Matematyki, ul. Banacha 2, 02-097 Warszawa (POLAND)},
author = {Franz, Matthias, Weber, Andrzej},
journal = {Annales de l’institut Fourier},
keywords = {Eilenberg-Moore spectral sequence; weight filtration; equivariant cohomology; intersection cohomology; complex algebraic $G$-varieties},
language = {eng},
number = {2},
pages = {673-691},
publisher = {Association des Annales de l'Institut Fourier},
title = {Weights in cohomology and the Eilenberg-Moore spectral sequence},
url = {http://eudml.org/doc/116202},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Franz, Matthias
AU - Weber, Andrzej
TI - Weights in cohomology and the Eilenberg-Moore spectral sequence
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 2
SP - 673
EP - 691
AB - We show that in the category of complex algebraic varieties, the Eilenberg–Moore spectral sequence can be endowed with a weight filtration. This implies that it degenerates if all spaces involved have pure cohomology. As application, we compute the rational cohomology of an algebraic $G$-variety $X$ ($G$ being a connected algebraic group) in terms of its equivariant cohomology provided that $H_G^*(X)$ is pure. This is the case, for example, if $X$ is smooth and has only finitely many orbits. We work in the category of mixed sheaves; therefore our results apply equally to (equivariant) intersection homology.
LA - eng
KW - Eilenberg-Moore spectral sequence; weight filtration; equivariant cohomology; intersection cohomology; complex algebraic $G$-varieties
UR - http://eudml.org/doc/116202
ER -

References

top
  1. A. Alekseev, E. Meinrenken, Equivariant cohomology and the Maurer-Cartan equation Zbl1085.57022
  2. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux Pervers, 100 (1983), 5-171 Zbl0536.14011
  3. J. Bernstein, V. Lunts, Equivariant sheaves and functors, 1578 (1994), Springer-Verlag, Berlin Zbl0808.14038MR1299527
  4. E. Bifet, C. De, Concini, C. Procesi, Cohomology of Regular Embeddings, Adv. Math. 82 (1990), 1-34 Zbl0743.14018MR1057441
  5. A. Borel, Sur la cohomologie des espaces fibrés et des espaces homogènes de groupes de Lie compacts, Ann. Math. 57 (1953), 115-207 Zbl0052.40001MR51508
  6. M. Brion, Variétés sphériques Zbl0741.14027
  7. M. Brion, R. Joshua, Vanishing of odd intersection cohomology II, Math. Ann. 321 (2001), 399-437 Zbl0997.14005MR1866494
  8. M. Brion, R. Joshua, Intersection cohomology of reductive varieties, (2003) Zbl1129.14033
  9. P. Deligne, Théorie de Hodge III, Publ. Math. I.H.E.S. 44 (1974), 5-77 Zbl0237.14003MR498552
  10. J. Denef, F. Loeser, Weights of exponential sums, intersection cohomology and Newton polyhedra, Inv. Math. 109 (1991), 275-294 Zbl0763.14025MR1128216
  11. D. Edidin, W. Graham, Equivariant intersection theory, Invent. Math. 131 (1998), 595-634 Zbl0940.14003MR1614555
  12. S. Eilenberg, J. C. Moore, Homology and fibrations I. Coalgebras cotensor product and its derived functors, Comment. Math. Helv. 40 (1966), 199-236 Zbl0148.43203MR203730
  13. M. Franz, On the integral cohomology of smooth toric varieties 
  14. M. Goresky, R. Mac, Pherson, Intersection homology II, Invent. Math. 72 (1983), 77-130 Zbl0529.55007MR696691
  15. M. Goresky, R. Kottwitz, R. Mac, Pherson, Equivariant cohomology, Koszul duality and the localization theorem, Inv. Math. 131 (1998), 25-83 Zbl0897.22009MR1489894
  16. R. M. Hain, The de Rham homotopy theory of complex algebraic varieties. I K -Theory, 1 (1987), 271-324 Zbl0637.55006MR908993
  17. R. M. Hain, S. Zucker, Unipotent variations of mixed Hodge structure, Invent. Math. 88 (1987), 83-124 Zbl0622.14007MR877008
  18. J. Huebschmann, Relative homological algebra homological perturbations, equivariant de Rham theory, and Koszul duality, (2003) 
  19. T. Maszczyk, A. Weber, Koszul duality for modules over Lie algebras, Duke Math. J. 112 (2002), 511-520 Zbl1014.17018MR1896472
  20. F. Morel, V. Voevodsky, A 1 -homotopy theory of schemes, Publ. Math. I.H.E.S. 90 (2001), 45-143 Zbl0983.14007MR1813224
  21. M. Saito, Hodge structure via filtered 𝒟 -modules, 130 (1985), 342-351 Zbl0621.14008
  22. M. Saito, Introduction to mixed Hodge modules, 179-180 (1989), 145-162 Zbl0753.32004
  23. M. Saito, Decomposition theorem for proper Kähler morphisms, Tôhoku Math. J. 42 (1990), 127-148 Zbl0699.14009MR1053945
  24. L. Smith, On the construction of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. Soc. 75 (1969), 873-878 Zbl0177.51403MR250312
  25. L. Smith, Lectures on the Eilenberg-Moore spectral sequence, 134 (1970), Springer Zbl0197.19702MR275435
  26. J. Stasheff, S. Halperin, Differential algebra in its own rite, Proc. Adv. Study Inst. Alg. Top. (Aarhus 1970), Vol. III 13 (1970), 567-577 Zbl0224.55027
  27. B. Totaro, The Chow ring of a classifying space. Algebraic K -theory, Proceedings of an AMS-IMS-SIAM summer research conference, Seattle (WA), USA, July 13-24, 1997. 67 (1999), 249-281, Raskind, Wayne et al., Providence, RI Zbl0967.14005
  28. A. Weber, Formality of equivariant intersection cohomology of algebraic varieties, Proc. Amer. Math. Soc. 131 (2003), 2633-2638 Zbl1023.14005MR1974316
  29. A. Weber, Weights in the cohomology of toric varieties, Central European Journal of Mathematics 2 (2004), 478-492 Zbl1077.14074MR2113544

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.