Weights in cohomology and the Eilenberg-Moore spectral sequence
Matthias Franz[1]; Andrzej Weber
- [1] Université de Genève, section de Mathématiques, CP 240, 1211 Genève 24 (Switzerland), Uniwersytet Warszawski, Instytut Matematyki, ul. Banacha 2, 02-097 Warszawa (POLAND)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 2, page 673-691
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFranz, Matthias, and Weber, Andrzej. "Weights in cohomology and the Eilenberg-Moore spectral sequence." Annales de l’institut Fourier 55.2 (2005): 673-691. <http://eudml.org/doc/116202>.
@article{Franz2005,
abstract = {We show that in the category of complex algebraic varieties, the Eilenberg–Moore
spectral sequence can be endowed with a weight filtration. This implies that it
degenerates if all spaces involved have pure cohomology. As application, we compute the
rational cohomology of an algebraic $G$-variety $X$ ($G$ being a connected algebraic
group) in terms of its equivariant cohomology provided that $H_G^*(X)$ is pure. This is
the case, for example, if $X$ is smooth and has only finitely many orbits. We work in the
category of mixed sheaves; therefore our results apply equally to (equivariant)
intersection homology.},
affiliation = {Université de Genève, section de Mathématiques, CP 240, 1211 Genève 24 (Switzerland), Uniwersytet Warszawski, Instytut Matematyki, ul. Banacha 2, 02-097 Warszawa (POLAND)},
author = {Franz, Matthias, Weber, Andrzej},
journal = {Annales de l’institut Fourier},
keywords = {Eilenberg-Moore spectral sequence; weight filtration; equivariant cohomology; intersection cohomology; complex algebraic $G$-varieties},
language = {eng},
number = {2},
pages = {673-691},
publisher = {Association des Annales de l'Institut Fourier},
title = {Weights in cohomology and the Eilenberg-Moore spectral sequence},
url = {http://eudml.org/doc/116202},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Franz, Matthias
AU - Weber, Andrzej
TI - Weights in cohomology and the Eilenberg-Moore spectral sequence
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 2
SP - 673
EP - 691
AB - We show that in the category of complex algebraic varieties, the Eilenberg–Moore
spectral sequence can be endowed with a weight filtration. This implies that it
degenerates if all spaces involved have pure cohomology. As application, we compute the
rational cohomology of an algebraic $G$-variety $X$ ($G$ being a connected algebraic
group) in terms of its equivariant cohomology provided that $H_G^*(X)$ is pure. This is
the case, for example, if $X$ is smooth and has only finitely many orbits. We work in the
category of mixed sheaves; therefore our results apply equally to (equivariant)
intersection homology.
LA - eng
KW - Eilenberg-Moore spectral sequence; weight filtration; equivariant cohomology; intersection cohomology; complex algebraic $G$-varieties
UR - http://eudml.org/doc/116202
ER -
References
top- A. Alekseev, E. Meinrenken, Equivariant cohomology and the Maurer-Cartan equation Zbl1085.57022
- A. Beilinson, J. Bernstein, P. Deligne, Faisceaux Pervers, 100 (1983), 5-171 Zbl0536.14011
- J. Bernstein, V. Lunts, Equivariant sheaves and functors, 1578 (1994), Springer-Verlag, Berlin Zbl0808.14038MR1299527
- E. Bifet, C. De, Concini, C. Procesi, Cohomology of Regular Embeddings, Adv. Math. 82 (1990), 1-34 Zbl0743.14018MR1057441
- A. Borel, Sur la cohomologie des espaces fibrés et des espaces homogènes de groupes de Lie compacts, Ann. Math. 57 (1953), 115-207 Zbl0052.40001MR51508
- M. Brion, Variétés sphériques Zbl0741.14027
- M. Brion, R. Joshua, Vanishing of odd intersection cohomology II, Math. Ann. 321 (2001), 399-437 Zbl0997.14005MR1866494
- M. Brion, R. Joshua, Intersection cohomology of reductive varieties, (2003) Zbl1129.14033
- P. Deligne, Théorie de Hodge III, Publ. Math. I.H.E.S. 44 (1974), 5-77 Zbl0237.14003MR498552
- J. Denef, F. Loeser, Weights of exponential sums, intersection cohomology and Newton polyhedra, Inv. Math. 109 (1991), 275-294 Zbl0763.14025MR1128216
- D. Edidin, W. Graham, Equivariant intersection theory, Invent. Math. 131 (1998), 595-634 Zbl0940.14003MR1614555
- S. Eilenberg, J. C. Moore, Homology and fibrations I. Coalgebras cotensor product and its derived functors, Comment. Math. Helv. 40 (1966), 199-236 Zbl0148.43203MR203730
- M. Franz, On the integral cohomology of smooth toric varieties
- M. Goresky, R. Mac, Pherson, Intersection homology II, Invent. Math. 72 (1983), 77-130 Zbl0529.55007MR696691
- M. Goresky, R. Kottwitz, R. Mac, Pherson, Equivariant cohomology, Koszul duality and the localization theorem, Inv. Math. 131 (1998), 25-83 Zbl0897.22009MR1489894
- R. M. Hain, The de Rham homotopy theory of complex algebraic varieties. I -Theory, 1 (1987), 271-324 Zbl0637.55006MR908993
- R. M. Hain, S. Zucker, Unipotent variations of mixed Hodge structure, Invent. Math. 88 (1987), 83-124 Zbl0622.14007MR877008
- J. Huebschmann, Relative homological algebra homological perturbations, equivariant de Rham theory, and Koszul duality, (2003)
- T. Maszczyk, A. Weber, Koszul duality for modules over Lie algebras, Duke Math. J. 112 (2002), 511-520 Zbl1014.17018MR1896472
- F. Morel, V. Voevodsky, -homotopy theory of schemes, Publ. Math. I.H.E.S. 90 (2001), 45-143 Zbl0983.14007MR1813224
- M. Saito, Hodge structure via filtered -modules, 130 (1985), 342-351 Zbl0621.14008
- M. Saito, Introduction to mixed Hodge modules, 179-180 (1989), 145-162 Zbl0753.32004
- M. Saito, Decomposition theorem for proper Kähler morphisms, Tôhoku Math. J. 42 (1990), 127-148 Zbl0699.14009MR1053945
- L. Smith, On the construction of the Eilenberg-Moore spectral sequence, Bull. Amer. Math. Soc. 75 (1969), 873-878 Zbl0177.51403MR250312
- L. Smith, Lectures on the Eilenberg-Moore spectral sequence, 134 (1970), Springer Zbl0197.19702MR275435
- J. Stasheff, S. Halperin, Differential algebra in its own rite, Proc. Adv. Study Inst. Alg. Top. (Aarhus 1970), Vol. III 13 (1970), 567-577 Zbl0224.55027
- B. Totaro, The Chow ring of a classifying space. Algebraic -theory, Proceedings of an AMS-IMS-SIAM summer research conference, Seattle (WA), USA, July 13-24, 1997. 67 (1999), 249-281, Raskind, Wayne et al., Providence, RI Zbl0967.14005
- A. Weber, Formality of equivariant intersection cohomology of algebraic varieties, Proc. Amer. Math. Soc. 131 (2003), 2633-2638 Zbl1023.14005MR1974316
- A. Weber, Weights in the cohomology of toric varieties, Central European Journal of Mathematics 2 (2004), 478-492 Zbl1077.14074MR2113544
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.