Weights in the cohomology of toric varieties

Andrzej Weber

Open Mathematics (2004)

  • Volume: 2, Issue: 3, page 478-492
  • ISSN: 2391-5455

Abstract

top
We describe the weight filtration in the cohomology of toric varieties. We present a role of the Frobenius automorphism in an elementary way. We prove that equivariant intersection homology of an arbitrary toric variety is pure. We obtain results concerning Koszul duality: nonequivariant intersection cohomology is equal to the cohomology of the Koszul complexIH T*(X)⊗H*(T). We also describe the weight filtration inIH *(X).

How to cite

top

Andrzej Weber. "Weights in the cohomology of toric varieties." Open Mathematics 2.3 (2004): 478-492. <http://eudml.org/doc/268729>.

@article{AndrzejWeber2004,
abstract = {We describe the weight filtration in the cohomology of toric varieties. We present a role of the Frobenius automorphism in an elementary way. We prove that equivariant intersection homology of an arbitrary toric variety is pure. We obtain results concerning Koszul duality: nonequivariant intersection cohomology is equal to the cohomology of the Koszul complexIH T*(X)⊗H*(T). We also describe the weight filtration inIH *(X).},
author = {Andrzej Weber},
journal = {Open Mathematics},
keywords = {14M25; 14F43 (55N33); 32S35},
language = {eng},
number = {3},
pages = {478-492},
title = {Weights in the cohomology of toric varieties},
url = {http://eudml.org/doc/268729},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Andrzej Weber
TI - Weights in the cohomology of toric varieties
JO - Open Mathematics
PY - 2004
VL - 2
IS - 3
SP - 478
EP - 492
AB - We describe the weight filtration in the cohomology of toric varieties. We present a role of the Frobenius automorphism in an elementary way. We prove that equivariant intersection homology of an arbitrary toric variety is pure. We obtain results concerning Koszul duality: nonequivariant intersection cohomology is equal to the cohomology of the Koszul complexIH T*(X)⊗H*(T). We also describe the weight filtration inIH *(X).
LA - eng
KW - 14M25; 14F43 (55N33); 32S35
UR - http://eudml.org/doc/268729
ER -

References

top
  1. [1] C. Allday, V. Puppe: “On a conjecture of Goresky, Kottwitz and MacPherson”,Canad. J. Math., Vol. 51, (1999), pp. 3–9. Zbl0954.18005
  2. [2] G. Barthel, J.P. Brasselet, K.H. Fieseler, L. Kaup: “Equivariant intersection cohomology of toric varieties”,Contemp. Math., Vol. 241, (1999), pp. 45–68. Zbl0970.14028
  3. [3] G. Barthel, J.P. Brasselet, K.H. Fieseler, L. Kaup: “Combinatorial intersection cohomology for fans”,Tohoku Math. J., Vol. 2, (2002), pp. 1–41. http://dx.doi.org/10.2748/tmj/1113247177 Zbl1055.14024
  4. [4] A.A. Beilinson, J. Bernstein, P. Deligne: “Pierre Faisceaux pervers”,Faisceaux pervers, Analysis and topology on singular spaces, I, (1981), pp. 5–171. (in French) 
  5. [5] M. Brion, R. Joshua: “Vanishing of old-dimensional intersection cohomology. II.”,Math. Ann., Vol. 321, (2001), pp. 399–437. http://dx.doi.org/10.1007/s002080100235 Zbl0997.14005
  6. [6] J.L. Brylinski: “Equivariant intersection cohomology”,AMS Contemp. Math., Vol. 139, (1992), pp. 5–32. Zbl0803.55002
  7. [7] J.L. Brylinski, B. Zhang: “Equivariant Todd classes for toric varieties”,Preprint math. AG/0311318. 
  8. [8] V. M. Buchstaber, T. E. Panov: “Torus actions, combinatorial topology, and homological algebra”,Russ. Math. Surv., Vol. 55, (2000), pp. 825–921. (translated fromUsp. Mat. Nauk., Vol. 55, (2000), pp. 3–106) http://dx.doi.org/10.1070/rm2000v055n05ABEH000320 Zbl1010.52011
  9. [9] J. Cheeger: “On the Hodge theory of Riemannian pseudomanifolds”,Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawai, 1979), Proc. Symp. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., (1980), pp. 91–146. 
  10. [10] J. Cheeger, M. Goresky, R. MacPherson: “L 2-cohomology and intersection homology of singular algebraic varieties”,Seminar on Differential Geometry, Ann. of Math. Stud., Princeton Univ. Press, Princeton, N.J., Vol. 102, (1982), pp. 303–340 Zbl0503.14008
  11. [11] V. I. Danilov: “The geometry of toric varieties”,Russian Math. Surveys, Vol. 33, (1978), pp. 97–154. http://dx.doi.org/10.1070/RM1978v033n02ABEH002305 Zbl0425.14013
  12. [12] P. Deligne: “La conjecture de Weil. I”,Inst. Hautes Études Sci. Publ. Math., Vol. 43, (1974), pp. 273–307; P. Deligne: “La conjecture de Weil. II”,Inst. Hautes Études Sci. Publ. Math., Vol. 52, (1980), pp. 137–252. 
  13. [13] P. Deligne: “Theorie de Hodge. II”,Publ. Math., Inst. Hautes Etud. Sci., Vol. 40, (1971), pp. 5–58. 
  14. [14] P. Deligne: “Theorie de Hodge. III”,Publ. Math., Inst. Hautes Etud. Sci., Vol. 44, (1974), pp. 5–77. 
  15. [15] J. Denef, F. Loeser: “Weights of exponential sums, intersection cohomology, and Newton polyhedra”,Inv. Math., Vol. 109, (1991), pp. 275–294. http://dx.doi.org/10.1007/BF01243914 Zbl0763.14025
  16. [16] S. Eilenberg, J. C. Moore: “Homology and fibrations I. Coalgebras, cotensor product and its derived functors”,Comment. Math. Helv., Vol. 40, (1966), pp. 199–236. Zbl0148.43203
  17. [17] K.H. Fieseler: “Rational intersection cohomology of projective toric varieties”,J. Reine Angew. Math., Vol. 413, (1991), pp. 88–98. Zbl0716.14006
  18. [18] M. Franz: “Thesis: Koszul duality for tori”,Konstanz University, 2001. Zbl0978.55004
  19. [19] M. Franz:On the integral cohomology of smooth, toric varieties, Preprint math.AT/0308253. 
  20. [20] M. Franz, A. Weber: “Weights in cohomology and the Eilenberg-Moore spectral sequence”, preprinthttp://math.AG/0405589. Zbl1145.14021
  21. [21] W. Fulton: “Introduction to toric varieties. Annals of Mathematics Studies”,Princeton University Press Vol. 131, (1993), pp. 157. 
  22. [22] M. Goresky, R. Kottwitz, R. MacPherson: “Equivariant cohomology, Koszul duality and the localization theorem”,Inv. Math., Vol. 131, (1998), pp. 25–83. http://dx.doi.org/10.1007/s002220050197 Zbl0897.22009
  23. [23] M. Goresky, R. MacPherson: “Intersection homology. II”,Invent. Math., Vol. 72, (1983), pp. 77–129. http://dx.doi.org/10.1007/BF01389130 Zbl0529.55007
  24. [24] M.N. Ishida:Torus embeddings and algebraic intersection complexes I, II, algeom/9403008-9. 
  25. [25] J. Jurkiewicz: “Chow ring of projective nonsingular torus embedding”,Colloq. Math., Vol. 43, (1980), pp. 261–270. Zbl0524.14005
  26. [26] S. Lillywhite, “Formality in an equivariant setting”,Trans. Amer. Math. Soc., Vol. 355, pp. 2771–2793. Zbl1021.55006
  27. [27] T. Maszczyk, A. Weber: “Koszul duality for modules over Lie algebra”,Duke Math. J., Vol. 112, (2002), pp. 511–520. http://dx.doi.org/10.1215/S0012-9074-02-11234-4 Zbl1014.17018
  28. [28] D. Notbohm, N. Ray: “On Davis Januszkiewicz Homotopy Types I; Formality and Rationalisation”, Preprint math.AT/0311167. Zbl1065.55006
  29. [29] T. Oda: “The algebraic de Rham theorem for toric varieties”,Tohoku Math. J., Vol. 2, (1993), pp. 231–247. Zbl0776.14003
  30. [30] C. Simpson:The topological realiztion of a simplicial presheaf, Preprint q-alg/9609004. 
  31. [31] L. Smith: “On the construction of the Eilenberg-Moore spectral sequence”,Bull. Amer. Math. Soc., Vol. 75, (1969), pp. 873–878. http://dx.doi.org/10.1090/S0002-9904-1969-12335-9 Zbl0177.51403
  32. [32] B. Totaro: “Chow groups, Chow cohomology, and linear varieties”,Journal of Algebraic Geometry, to appear.http://www.dpmms.cam.ac.uk/∼bt219/papers.html Zbl1329.14018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.