An extension of Rais' theorem and seaweed subalgebras of simple Lie algebras

Dmitri I. Panyushev[1]

  • [1] Independent university of Moscow, Bol'shoi Vlaservskii per.11, 119002 Moscow (Russia)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 3, page 693-715
  • ISSN: 0373-0956

Abstract

top
We prove an extension of Rais' theorem on the coadjoint representation of certain graded Lie algebras. As an application, we prove that, for the coadjoint representation of any seaweed subalgebra in a general linear or symplectic Lie algebra, there is a generic stabiliser and the field of invariants is rational. It is also shown that if the highest root of a simple Lie algerba is not fundamental, then there is a parabolic subalgebra whose coadjoint representation do not have a generic stabiliser.

How to cite

top

I. Panyushev, Dmitri. "An extension of Rais' theorem and seaweed subalgebras of simple Lie algebras." Annales de l’institut Fourier 55.3 (2005): 693-715. <http://eudml.org/doc/116204>.

@article{I2005,
abstract = {We prove an extension of Rais' theorem on the coadjoint representation of certain graded Lie algebras. As an application, we prove that, for the coadjoint representation of any seaweed subalgebra in a general linear or symplectic Lie algebra, there is a generic stabiliser and the field of invariants is rational. It is also shown that if the highest root of a simple Lie algerba is not fundamental, then there is a parabolic subalgebra whose coadjoint representation do not have a generic stabiliser.},
affiliation = {Independent university of Moscow, Bol'shoi Vlaservskii per.11, 119002 Moscow (Russia)},
author = {I. Panyushev, Dmitri},
journal = {Annales de l’institut Fourier},
keywords = {field of invariants; generic stabiliser; simple Lie algebra; seaweed subalgebra},
language = {eng},
number = {3},
pages = {693-715},
publisher = {Association des Annales de l'Institut Fourier},
title = {An extension of Rais' theorem and seaweed subalgebras of simple Lie algebras},
url = {http://eudml.org/doc/116204},
volume = {55},
year = {2005},
}

TY - JOUR
AU - I. Panyushev, Dmitri
TI - An extension of Rais' theorem and seaweed subalgebras of simple Lie algebras
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 693
EP - 715
AB - We prove an extension of Rais' theorem on the coadjoint representation of certain graded Lie algebras. As an application, we prove that, for the coadjoint representation of any seaweed subalgebra in a general linear or symplectic Lie algebra, there is a generic stabiliser and the field of invariants is rational. It is also shown that if the highest root of a simple Lie algerba is not fundamental, then there is a parabolic subalgebra whose coadjoint representation do not have a generic stabiliser.
LA - eng
KW - field of invariants; generic stabiliser; simple Lie algebra; seaweed subalgebra
UR - http://eudml.org/doc/116204
ER -

References

top
  1. A.A. Arkhangel'skii, Completely integrable Hamiltonian systems on the group of triangular matrices, Math. USSR-Sb. 36 (1980), 127-134 Zbl0433.58015
  2. A.G. Elashvili, Canonical form and stationary subalgebras of points of general position for simple linear Lie groups, Funct. Anal. Appl. 6 (1972), 44-53 Zbl0252.22015
  3. Y. Kosmann, S. Sternberg, Conjugaison des sous-algèbres d'isotropie, C. R. Acad. Sci. Paris. Sér. A 279 (1974), 777-779 Zbl0297.22013MR354794
  4. M.I. Gekhtman, M.Z. Shapiro, Noncommutative and commutative integrability of generic Toda flows in simple Lie algebras, Comm. Pure Appl. Math. 52 (1999), 53-84 Zbl0937.37045MR1648421
  5. V. Dergachev, A.A. Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10 (2000), 331-343 Zbl0980.17001MR1774864
  6. A. Dvorsky, Index of parabolic and seaweed subalgebras of 𝔰 𝔬 n , Lin. Alg. Appl. 374 (2003), 127-142 Zbl1056.17009MR2008784
  7. A. Joseph, A preparation theorem for the prime spectrum of a semisimple Lie algebra, J. Alg. 48 (1977), 241-289 Zbl0405.17007MR453829
  8. D. Panyushev, Inductive formulas for the index of seaweed Lie algebras, Moscow Math. J. 1 (2001), 221-241 Zbl0998.17008MR1878277
  9. D. Panyushev, The index of a Lie algebra, the centralizer of a nilpotent element, and the normalizer of the centralizer, Math. Proc. Camb. Phil. Soc. 134 (2003), 41-59 Zbl1041.17022MR1937791
  10. M. Raïs, L’indice des produits semi-directs E × ρ 𝔤 , C.R. Acad. Sc. Paris, Ser. A 287 (1978), 195-197 Zbl0387.17002MR506502
  11. R.W. Richardson, Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math. 16 (1972), 6-14 Zbl0242.14010MR294336
  12. P. Tauvel, R. Yu, Indice et formes linéaires stables dans les algèbres de Lie, J. Alg. 273 (2004), 507-516 Zbl1088.17006MR2037708
  13. P. Tauvel, R. Yu, Sur l'indice de certaines algèbres de Lie, Ann. Inst. Fourier 54 (2004), 1793-1810 Zbl1137.17300MR2134224
  14. E.B. Vinberg, V.L. Popov, Invariant theory, Algebraic Geometry IV 55 (1994), 123-284, Springer, Berlin-Heidelberg-New York Zbl0789.14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.