Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras.

Karin Baur[1]; Anne Moreau[2]

  • [1] ETH Zürich Departement Mathematik Rämistrasse 101 8092 Zürich (Switzerland)
  • [2] LMA Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex (France)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 2, page 417-451
  • ISSN: 0373-0956

Abstract

top
We say that a finite dimensional Lie algebra is quasi-reductive if it has a linear form whose stabilizer for the coadjoint representation, modulo the center, is a reductive Lie algebra with a center consisting of semisimple elements. Parabolic subalgebras of a semisimple Lie algebra are not always quasi-reductive (except in types A or C by work of Panyushev). The classification of quasi-reductive parabolic subalgebras in the classical case has been recently achieved in unpublished work of Duflo, Khalgui and Torasso. In this paper, we investigate the quasi-reductivity of biparabolic subalgebras of reductive Lie algebras. Biparabolic (or seaweed) subalgebras are the intersection of two parabolic subalgebras whose sum is the total Lie algebra. As a main result, we complete the classification of quasi-reductive parabolic subalgebras of reductive Lie algebras by considering the exceptional cases.

How to cite

top

Baur, Karin, and Moreau, Anne. "Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras.." Annales de l’institut Fourier 61.2 (2011): 417-451. <http://eudml.org/doc/219741>.

@article{Baur2011,
abstract = {We say that a finite dimensional Lie algebra is quasi-reductive if it has a linear form whose stabilizer for the coadjoint representation, modulo the center, is a reductive Lie algebra with a center consisting of semisimple elements. Parabolic subalgebras of a semisimple Lie algebra are not always quasi-reductive (except in types A or C by work of Panyushev). The classification of quasi-reductive parabolic subalgebras in the classical case has been recently achieved in unpublished work of Duflo, Khalgui and Torasso. In this paper, we investigate the quasi-reductivity of biparabolic subalgebras of reductive Lie algebras. Biparabolic (or seaweed) subalgebras are the intersection of two parabolic subalgebras whose sum is the total Lie algebra. As a main result, we complete the classification of quasi-reductive parabolic subalgebras of reductive Lie algebras by considering the exceptional cases.},
affiliation = {ETH Zürich Departement Mathematik Rämistrasse 101 8092 Zürich (Switzerland); LMA Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex (France)},
author = {Baur, Karin, Moreau, Anne},
journal = {Annales de l’institut Fourier},
keywords = {Reductive Lie algebras; quasi-reductive Lie algebras; index; biparabolic Lie algebras; seaweed algebras; regular linear forms; reductive Lie algebras},
language = {eng},
number = {2},
pages = {417-451},
publisher = {Association des Annales de l’institut Fourier},
title = {Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras.},
url = {http://eudml.org/doc/219741},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Baur, Karin
AU - Moreau, Anne
TI - Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras.
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 417
EP - 451
AB - We say that a finite dimensional Lie algebra is quasi-reductive if it has a linear form whose stabilizer for the coadjoint representation, modulo the center, is a reductive Lie algebra with a center consisting of semisimple elements. Parabolic subalgebras of a semisimple Lie algebra are not always quasi-reductive (except in types A or C by work of Panyushev). The classification of quasi-reductive parabolic subalgebras in the classical case has been recently achieved in unpublished work of Duflo, Khalgui and Torasso. In this paper, we investigate the quasi-reductivity of biparabolic subalgebras of reductive Lie algebras. Biparabolic (or seaweed) subalgebras are the intersection of two parabolic subalgebras whose sum is the total Lie algebra. As a main result, we complete the classification of quasi-reductive parabolic subalgebras of reductive Lie algebras by considering the exceptional cases.
LA - eng
KW - Reductive Lie algebras; quasi-reductive Lie algebras; index; biparabolic Lie algebras; seaweed algebras; regular linear forms; reductive Lie algebras
UR - http://eudml.org/doc/219741
ER -

References

top
  1. N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, (2002), Springer-Verlag, Berlin Zbl0672.22001MR1890629
  2. V. Dergachev, A.A. Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10 (2000), 331-343 Zbl0980.17001MR1774864
  3. M. Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math. 149 (1982), 153-213 Zbl0529.22011MR688348
  4. M. Duflo, M.S. Khalgui, P. Torasso, Quasi-reductive Lie algebras Zbl1307.17012
  5. M. Duflo, M. Vergne, Une propriété de la représentation coadjointe d’une algèbre de Lie, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A583-A585 Zbl0192.37402MR245629
  6. A. Dvorsky, Index of parabolic and seaweed subalgebras of 𝔰𝔬 n , Lin. Alg. Appl 374 (2003), 127-142 Zbl1056.17009MR2008784
  7. A.G. Elashvili, On the index of parabolic subalgebras of semisimple Lie algebras Zbl0626.17004
  8. Harish-Chandra, Discrete series for semisimple Lie groups, I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241-318 Zbl0152.13402MR219665
  9. Harish-Chandra, Discrete series for semisimple Lie groups, II. Explicit determination of the characters, Acta Math. 116 (1966), 1-111 Zbl0199.20102MR219666
  10. A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras. I, J. Algebra 305 (2006), 485-515 Zbl1183.17009MR2264140
  11. A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras. II, J. Algebra 312 (2007), 158-193 Zbl1184.17008MR2320453
  12. A.A. Kirillov, The method of orbits in the theory of unitary representations of Lie groups, Funkcional. Anal. i Prilozen (1968), 96-98 Zbl0194.33804MR233930
  13. Calvin C. Moore, Restrictions of unitary representations to subgroups and ergodic theory: Group extensions and group cohomology, Group Representations in Math. and Phys. (Battelle Seattle 1969 Rencontres) (1970), 1-35, Springer, Berlin Zbl0223.22020MR279232
  14. A. Moreau, Indice du normalisateur du centralisateur d’un élément nilpotent dans une algèbre de Lie semi-simple, Bull. Soc. Math. France 134 (2006), 83-117 Zbl1122.17004MR2233701
  15. A. Moreau, Indice et décomposition de Cartan d’une algèbre de Lie semi-simple réelle, J. Algebra 303 (2006), 382-406 Zbl1114.17003MR2253668
  16. A. Moreau, O. Yakimova, Coadjoint orbits of reductive type of seaweed algebras, (2010) Zbl1315.17006
  17. D.I. Panyushev, Inductive formulas for the index of seaweed Lie algebras, Moscow Math. J. 1, 2 (2001), 221-241, 303 Zbl0998.17008MR1878277
  18. D.I. Panyushev, The index of a Lie algebra, the centraliser of a nilpotent element, and the normaliser of the centraliser, Math. Proc. Cambridge Philos. Soc. 134 (2003), 41-59 Zbl1041.17022MR1937791
  19. D.I. Panyushev, An extension of Raïs’ theorem and seaweed subalgebras of simple Lie algebras, Ann. Inst. Fourier (Grenoble) 55 (2005), 693-715 Zbl1151.17305MR2149399
  20. P. Tauvel, R.W.T. Yu, Indice et formes linéaires stables dans les algèbres de Lie, J. Algebra 273 (2004), 507-516 Zbl1088.17006MR2037708
  21. P. Tauvel, R.W.T. Yu, Lie Algebras and Algebraic groups, (2005), Springer, Berlin Heidelberg New York Zbl1068.17001MR2146652
  22. P. Tauvel, R.W.T. Yu, Sur l’indice de certaines algèbres de Lie, Ann.Inst. Fourier (Grenoble) 54 (2005), 1793-1810 Zbl1137.17300MR2134224
  23. J. Tits, Groupes semi-simples isotropes, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962) (1962), 137-147, Librairie Universitaire, Louvain Zbl0154.02601MR148667
  24. J. Tits, Classification of algebraic semisimple groups, Proc. Symposia Pure Math. AMS (1966), 33-62 Zbl0238.20052MR224710
  25. O. Yakimova, The index of centralizers of elements in classical Lie algebras, Funktsional. Anal. i Prilozhen. 40 (2006), 52-64 Zbl1152.17001MR2223249

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.