Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras.
Karin Baur[1]; Anne Moreau[2]
- [1] ETH Zürich Departement Mathematik Rämistrasse 101 8092 Zürich (Switzerland)
- [2] LMA Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 2, page 417-451
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBaur, Karin, and Moreau, Anne. "Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras.." Annales de l’institut Fourier 61.2 (2011): 417-451. <http://eudml.org/doc/219741>.
@article{Baur2011,
abstract = {We say that a finite dimensional Lie algebra is quasi-reductive if it has a linear form whose stabilizer for the coadjoint representation, modulo the center, is a reductive Lie algebra with a center consisting of semisimple elements. Parabolic subalgebras of a semisimple Lie algebra are not always quasi-reductive (except in types A or C by work of Panyushev). The classification of quasi-reductive parabolic subalgebras in the classical case has been recently achieved in unpublished work of Duflo, Khalgui and Torasso. In this paper, we investigate the quasi-reductivity of biparabolic subalgebras of reductive Lie algebras. Biparabolic (or seaweed) subalgebras are the intersection of two parabolic subalgebras whose sum is the total Lie algebra. As a main result, we complete the classification of quasi-reductive parabolic subalgebras of reductive Lie algebras by considering the exceptional cases.},
affiliation = {ETH Zürich Departement Mathematik Rämistrasse 101 8092 Zürich (Switzerland); LMA Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex (France)},
author = {Baur, Karin, Moreau, Anne},
journal = {Annales de l’institut Fourier},
keywords = {Reductive Lie algebras; quasi-reductive Lie algebras; index; biparabolic Lie algebras; seaweed algebras; regular linear forms; reductive Lie algebras},
language = {eng},
number = {2},
pages = {417-451},
publisher = {Association des Annales de l’institut Fourier},
title = {Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras.},
url = {http://eudml.org/doc/219741},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Baur, Karin
AU - Moreau, Anne
TI - Quasi-reductive (bi)parabolic subalgebras in reductive Lie algebras.
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 417
EP - 451
AB - We say that a finite dimensional Lie algebra is quasi-reductive if it has a linear form whose stabilizer for the coadjoint representation, modulo the center, is a reductive Lie algebra with a center consisting of semisimple elements. Parabolic subalgebras of a semisimple Lie algebra are not always quasi-reductive (except in types A or C by work of Panyushev). The classification of quasi-reductive parabolic subalgebras in the classical case has been recently achieved in unpublished work of Duflo, Khalgui and Torasso. In this paper, we investigate the quasi-reductivity of biparabolic subalgebras of reductive Lie algebras. Biparabolic (or seaweed) subalgebras are the intersection of two parabolic subalgebras whose sum is the total Lie algebra. As a main result, we complete the classification of quasi-reductive parabolic subalgebras of reductive Lie algebras by considering the exceptional cases.
LA - eng
KW - Reductive Lie algebras; quasi-reductive Lie algebras; index; biparabolic Lie algebras; seaweed algebras; regular linear forms; reductive Lie algebras
UR - http://eudml.org/doc/219741
ER -
References
top- N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, (2002), Springer-Verlag, Berlin Zbl0672.22001MR1890629
- V. Dergachev, A.A. Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10 (2000), 331-343 Zbl0980.17001MR1774864
- M. Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math. 149 (1982), 153-213 Zbl0529.22011MR688348
- M. Duflo, M.S. Khalgui, P. Torasso, Quasi-reductive Lie algebras Zbl1307.17012
- M. Duflo, M. Vergne, Une propriété de la représentation coadjointe d’une algèbre de Lie, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A583-A585 Zbl0192.37402MR245629
- A. Dvorsky, Index of parabolic and seaweed subalgebras of , Lin. Alg. Appl 374 (2003), 127-142 Zbl1056.17009MR2008784
- A.G. Elashvili, On the index of parabolic subalgebras of semisimple Lie algebras Zbl0626.17004
- Harish-Chandra, Discrete series for semisimple Lie groups, I. Construction of invariant eigendistributions, Acta Math. 113 (1965), 241-318 Zbl0152.13402MR219665
- Harish-Chandra, Discrete series for semisimple Lie groups, II. Explicit determination of the characters, Acta Math. 116 (1966), 1-111 Zbl0199.20102MR219666
- A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras. I, J. Algebra 305 (2006), 485-515 Zbl1183.17009MR2264140
- A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras. II, J. Algebra 312 (2007), 158-193 Zbl1184.17008MR2320453
- A.A. Kirillov, The method of orbits in the theory of unitary representations of Lie groups, Funkcional. Anal. i Prilozen (1968), 96-98 Zbl0194.33804MR233930
- Calvin C. Moore, Restrictions of unitary representations to subgroups and ergodic theory: Group extensions and group cohomology, Group Representations in Math. and Phys. (Battelle Seattle 1969 Rencontres) (1970), 1-35, Springer, Berlin Zbl0223.22020MR279232
- A. Moreau, Indice du normalisateur du centralisateur d’un élément nilpotent dans une algèbre de Lie semi-simple, Bull. Soc. Math. France 134 (2006), 83-117 Zbl1122.17004MR2233701
- A. Moreau, Indice et décomposition de Cartan d’une algèbre de Lie semi-simple réelle, J. Algebra 303 (2006), 382-406 Zbl1114.17003MR2253668
- A. Moreau, O. Yakimova, Coadjoint orbits of reductive type of seaweed algebras, (2010) Zbl1315.17006
- D.I. Panyushev, Inductive formulas for the index of seaweed Lie algebras, Moscow Math. J. 1, 2 (2001), 221-241, 303 Zbl0998.17008MR1878277
- D.I. Panyushev, The index of a Lie algebra, the centraliser of a nilpotent element, and the normaliser of the centraliser, Math. Proc. Cambridge Philos. Soc. 134 (2003), 41-59 Zbl1041.17022MR1937791
- D.I. Panyushev, An extension of Raïs’ theorem and seaweed subalgebras of simple Lie algebras, Ann. Inst. Fourier (Grenoble) 55 (2005), 693-715 Zbl1151.17305MR2149399
- P. Tauvel, R.W.T. Yu, Indice et formes linéaires stables dans les algèbres de Lie, J. Algebra 273 (2004), 507-516 Zbl1088.17006MR2037708
- P. Tauvel, R.W.T. Yu, Lie Algebras and Algebraic groups, (2005), Springer, Berlin Heidelberg New York Zbl1068.17001MR2146652
- P. Tauvel, R.W.T. Yu, Sur l’indice de certaines algèbres de Lie, Ann.Inst. Fourier (Grenoble) 54 (2005), 1793-1810 Zbl1137.17300MR2134224
- J. Tits, Groupes semi-simples isotropes, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962) (1962), 137-147, Librairie Universitaire, Louvain Zbl0154.02601MR148667
- J. Tits, Classification of algebraic semisimple groups, Proc. Symposia Pure Math. AMS (1966), 33-62 Zbl0238.20052MR224710
- O. Yakimova, The index of centralizers of elements in classical Lie algebras, Funktsional. Anal. i Prilozhen. 40 (2006), 52-64 Zbl1152.17001MR2223249
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.