Concentration of the Brownian bridge on Cartan-Hadamard manifolds with pinched negative sectional curvature

Marc Arnaudon[1]; Thomas Simon

  • [1] Université de Poitiers, département de Mathématiques, Téléport 2, BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope-Chasseneuil Cedex (France), Université d'Évry-Val d'Essonne, Equipe d'Analyse et Probabilités, Boulevard François Mitterrand, 91025 Evry Cedex (France)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 3, page 891-930
  • ISSN: 0373-0956

Abstract

top
We study the rate of concentration of a Brownian bridge in time one around the corresponding geodesical segment on a Cartan-Hadamard manifold with pinched negative sectional curvature, when the distance between the two extremities tends to infinity. This improves on previous results by A. Eberle, and one of us . Along the way, we derive a new asymptotic estimate for the logarithmic derivative of the heat kernel on such manifolds, in bounded time and with one space parameter tending to infinity, which can be viewed as a counterpart to Bismut's asymptotic formula in small time.

How to cite

top

Arnaudon, Marc, and Simon, Thomas. "Concentration of the Brownian bridge on Cartan-Hadamard manifolds with pinched negative sectional curvature." Annales de l’institut Fourier 55.3 (2005): 891-930. <http://eudml.org/doc/116211>.

@article{Arnaudon2005,
abstract = {We study the rate of concentration of a Brownian bridge in time one around the corresponding geodesical segment on a Cartan-Hadamard manifold with pinched negative sectional curvature, when the distance between the two extremities tends to infinity. This improves on previous results by A. Eberle, and one of us . Along the way, we derive a new asymptotic estimate for the logarithmic derivative of the heat kernel on such manifolds, in bounded time and with one space parameter tending to infinity, which can be viewed as a counterpart to Bismut's asymptotic formula in small time.},
affiliation = {Université de Poitiers, département de Mathématiques, Téléport 2, BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope-Chasseneuil Cedex (France), Université d'Évry-Val d'Essonne, Equipe d'Analyse et Probabilités, Boulevard François Mitterrand, 91025 Evry Cedex (France)},
author = {Arnaudon, Marc, Simon, Thomas},
journal = {Annales de l’institut Fourier},
keywords = {Brownian bridge; Cartan-Hadamard manifold; comparison theorems; Cox-Ingersoll-Ross process; heat kernel; large deviations; rank-one noncompact symmetric space},
language = {eng},
number = {3},
pages = {891-930},
publisher = {Association des Annales de l'Institut Fourier},
title = {Concentration of the Brownian bridge on Cartan-Hadamard manifolds with pinched negative sectional curvature},
url = {http://eudml.org/doc/116211},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Arnaudon, Marc
AU - Simon, Thomas
TI - Concentration of the Brownian bridge on Cartan-Hadamard manifolds with pinched negative sectional curvature
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 891
EP - 930
AB - We study the rate of concentration of a Brownian bridge in time one around the corresponding geodesical segment on a Cartan-Hadamard manifold with pinched negative sectional curvature, when the distance between the two extremities tends to infinity. This improves on previous results by A. Eberle, and one of us . Along the way, we derive a new asymptotic estimate for the logarithmic derivative of the heat kernel on such manifolds, in bounded time and with one space parameter tending to infinity, which can be viewed as a counterpart to Bismut's asymptotic formula in small time.
LA - eng
KW - Brownian bridge; Cartan-Hadamard manifold; comparison theorems; Cox-Ingersoll-Ross process; heat kernel; large deviations; rank-one noncompact symmetric space
UR - http://eudml.org/doc/116211
ER -

References

top
  1. J. P. Anker, P. Ostellari, The heat kernel on non compact symmetric spaces, (2003), 27-46, Amer. Math. Society, Providence, RI Zbl1036.22005
  2. M. Berger, A Panoramic View of Riemannian Geometry, (2003), Springer-Verlag Zbl1038.53002MR2002701
  3. J. M. Bismut, Large Deviations and the Malliavin Calculus, (1984), Birkhäuser Zbl0537.35003MR755001
  4. M. R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, (1999), Springer-Verlag, Berlin Zbl0988.53001MR1744486
  5. J. Cheeger, D. G. Ebin, Comparison Theorems in Riemannian Geometry, (1975), North-Holland Zbl0309.53035MR458335
  6. A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, (1993), Jones and Barlett Publishers, Boston Zbl0793.60030MR1202429
  7. A. Eberle, Absence of spectral gaps on a class of loop spaces, J. Math. Pures Appl 81 (2002), 915-955 Zbl1029.58026MR1946909
  8. M. Emery, Stochastic Calculus in Manifolds, (1989), Springer-Verlag, Berlin Zbl0697.60060MR1030543
  9. W. Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc 77 (1954), 1-31 Zbl0059.11601MR63607
  10. S. Giulini, W. Woess, The Martin compactification of the Cartesian product of two hyperbolic spaces, J. Reine Angew. Math. 444 (1993), 17-28 Zbl0793.31007MR1241792
  11. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, (1978), Academic Press Zbl0451.53038MR514561
  12. S. Helgason, Groups and Geometric Analysis, (1984), Academic Press Zbl0543.58001MR754767
  13. E. P. Hsu, Stochastic Analysis on Manifolds, (2002), Amer. Math. Society, Providence, RI Zbl0994.58019
  14. T. H. Koornwinder, Jacobi functions and analysis on non compact semisimple Lie groups, (1984), 1-85, Reidel Zbl0584.43010
  15. N. Lohoue, T. Rychener, Die Resolvente von Δ auf symmetrischen Raümen von nichtkompakten Typ, Comment. Math. Helvet. 57 (1982), 445-468 Zbl0505.53022MR689073
  16. G. Lorang, B. Roynette, Étude d'une fonctionnelle liée au pont de Bessel, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), 107-133 Zbl0842.60076MR1373728
  17. W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, (1966), Springer-Verlag, New York Zbl0143.08502MR232968
  18. P. Mandl, Analytical Treatment of One-Dimensional Markov Processes, (1968), Academia, Prague, and Springer-Verlag, New-York Zbl0179.47802MR247667
  19. J. R. Norris, Path integral formulae for heat kernels and their derivatives, Probab. Theory Related Fields 94 (1993), 525-541 Zbl0791.58112MR1201558
  20. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, (1999), Springer-Verlag, Berlin Zbl0917.60006MR1725357
  21. T. Simon, Concentration of the Brownian bridge on the hyperbolic plane, Ann. Probab. 30 (2002), 1977-1989 Zbl1018.60080MR1944013
  22. A. Thalmaier, On the Differentiation of Heat Semigroups and Poisson Integrals, Stoch. Stoch. Rep. 61 (1997), 297-321 Zbl0897.60064MR1488139
  23. A. Thalmaier, F.Y. Wang, Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal. 155 (1998), 109-124 Zbl0914.58042MR1622800

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.