Concentration of the Brownian bridge on Cartan-Hadamard manifolds with pinched negative sectional curvature
Marc Arnaudon[1]; Thomas Simon
- [1] Université de Poitiers, département de Mathématiques, Téléport 2, BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope-Chasseneuil Cedex (France), Université d'Évry-Val d'Essonne, Equipe d'Analyse et Probabilités, Boulevard François Mitterrand, 91025 Evry Cedex (France)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 3, page 891-930
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArnaudon, Marc, and Simon, Thomas. "Concentration of the Brownian bridge on Cartan-Hadamard manifolds with pinched negative sectional curvature." Annales de l’institut Fourier 55.3 (2005): 891-930. <http://eudml.org/doc/116211>.
@article{Arnaudon2005,
abstract = {We study the rate of concentration of a Brownian bridge in time one around the
corresponding geodesical segment on a Cartan-Hadamard manifold with pinched negative
sectional curvature, when the distance between the two extremities tends to infinity.
This improves on previous results by A. Eberle, and one of us . Along the way, we derive
a new asymptotic estimate for the logarithmic derivative of the heat kernel on such
manifolds, in bounded time and with one space parameter tending to infinity, which can be
viewed as a counterpart to Bismut's asymptotic formula in small time.},
affiliation = {Université de Poitiers, département de Mathématiques, Téléport 2, BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope-Chasseneuil Cedex (France), Université d'Évry-Val d'Essonne, Equipe d'Analyse et Probabilités, Boulevard François Mitterrand, 91025 Evry Cedex (France)},
author = {Arnaudon, Marc, Simon, Thomas},
journal = {Annales de l’institut Fourier},
keywords = {Brownian bridge; Cartan-Hadamard manifold; comparison theorems; Cox-Ingersoll-Ross process; heat kernel; large deviations; rank-one noncompact symmetric space},
language = {eng},
number = {3},
pages = {891-930},
publisher = {Association des Annales de l'Institut Fourier},
title = {Concentration of the Brownian bridge on Cartan-Hadamard manifolds with pinched negative sectional curvature},
url = {http://eudml.org/doc/116211},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Arnaudon, Marc
AU - Simon, Thomas
TI - Concentration of the Brownian bridge on Cartan-Hadamard manifolds with pinched negative sectional curvature
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 891
EP - 930
AB - We study the rate of concentration of a Brownian bridge in time one around the
corresponding geodesical segment on a Cartan-Hadamard manifold with pinched negative
sectional curvature, when the distance between the two extremities tends to infinity.
This improves on previous results by A. Eberle, and one of us . Along the way, we derive
a new asymptotic estimate for the logarithmic derivative of the heat kernel on such
manifolds, in bounded time and with one space parameter tending to infinity, which can be
viewed as a counterpart to Bismut's asymptotic formula in small time.
LA - eng
KW - Brownian bridge; Cartan-Hadamard manifold; comparison theorems; Cox-Ingersoll-Ross process; heat kernel; large deviations; rank-one noncompact symmetric space
UR - http://eudml.org/doc/116211
ER -
References
top- J. P. Anker, P. Ostellari, The heat kernel on non compact symmetric spaces, (2003), 27-46, Amer. Math. Society, Providence, RI Zbl1036.22005
- M. Berger, A Panoramic View of Riemannian Geometry, (2003), Springer-Verlag Zbl1038.53002MR2002701
- J. M. Bismut, Large Deviations and the Malliavin Calculus, (1984), Birkhäuser Zbl0537.35003MR755001
- M. R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, (1999), Springer-Verlag, Berlin Zbl0988.53001MR1744486
- J. Cheeger, D. G. Ebin, Comparison Theorems in Riemannian Geometry, (1975), North-Holland Zbl0309.53035MR458335
- A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, (1993), Jones and Barlett Publishers, Boston Zbl0793.60030MR1202429
- A. Eberle, Absence of spectral gaps on a class of loop spaces, J. Math. Pures Appl 81 (2002), 915-955 Zbl1029.58026MR1946909
- M. Emery, Stochastic Calculus in Manifolds, (1989), Springer-Verlag, Berlin Zbl0697.60060MR1030543
- W. Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc 77 (1954), 1-31 Zbl0059.11601MR63607
- S. Giulini, W. Woess, The Martin compactification of the Cartesian product of two hyperbolic spaces, J. Reine Angew. Math. 444 (1993), 17-28 Zbl0793.31007MR1241792
- S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, (1978), Academic Press Zbl0451.53038MR514561
- S. Helgason, Groups and Geometric Analysis, (1984), Academic Press Zbl0543.58001MR754767
- E. P. Hsu, Stochastic Analysis on Manifolds, (2002), Amer. Math. Society, Providence, RI Zbl0994.58019
- T. H. Koornwinder, Jacobi functions and analysis on non compact semisimple Lie groups, (1984), 1-85, Reidel Zbl0584.43010
- N. Lohoue, T. Rychener, Die Resolvente von auf symmetrischen Raümen von nichtkompakten Typ, Comment. Math. Helvet. 57 (1982), 445-468 Zbl0505.53022MR689073
- G. Lorang, B. Roynette, Étude d'une fonctionnelle liée au pont de Bessel, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), 107-133 Zbl0842.60076MR1373728
- W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, (1966), Springer-Verlag, New York Zbl0143.08502MR232968
- P. Mandl, Analytical Treatment of One-Dimensional Markov Processes, (1968), Academia, Prague, and Springer-Verlag, New-York Zbl0179.47802MR247667
- J. R. Norris, Path integral formulae for heat kernels and their derivatives, Probab. Theory Related Fields 94 (1993), 525-541 Zbl0791.58112MR1201558
- D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, (1999), Springer-Verlag, Berlin Zbl0917.60006MR1725357
- T. Simon, Concentration of the Brownian bridge on the hyperbolic plane, Ann. Probab. 30 (2002), 1977-1989 Zbl1018.60080MR1944013
- A. Thalmaier, On the Differentiation of Heat Semigroups and Poisson Integrals, Stoch. Stoch. Rep. 61 (1997), 297-321 Zbl0897.60064MR1488139
- A. Thalmaier, F.Y. Wang, Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal. 155 (1998), 109-124 Zbl0914.58042MR1622800
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.