# Resolutions of homogeneous bundles on ${\mathbb{P}}^{2}$

Giorgio Ottaviani^{[1]}; Elena Rubei

- [1] Dipartimento di Matematica ``U.Dini'', Viale Morgagni 67/A, c.a.p., 50134 Firenze (Italy)

Annales de l’institut Fourier (2005)

- Volume: 55, Issue: 3, page 973-1015
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topOttaviani, Giorgio, and Rubei, Elena. "Resolutions of homogeneous bundles on ${\mathbb {P}}^2$." Annales de l’institut Fourier 55.3 (2005): 973-1015. <http://eudml.org/doc/116213>.

@article{Ottaviani2005,

abstract = {We characterize minimal free resolutions of homogeneous bundles on $\{\mathbb \{P\}\}^2$. Besides
we study stability and simplicity of homogeneous bundles on $\{\mathbb \{P\}\}^2$ by means of
their minimal free resolutions; in particular we give a criterion to see when a
homogeneous bundle is simple by means of its minimal resolution in the case the first
bundle of the resolution is irreducible.},

affiliation = {Dipartimento di Matematica ``U.Dini'', Viale Morgagni 67/A, c.a.p., 50134 Firenze (Italy)},

author = {Ottaviani, Giorgio, Rubei, Elena},

journal = {Annales de l’institut Fourier},

keywords = {homogeneous bundles; minimal resolutions; quivers},

language = {eng},

number = {3},

pages = {973-1015},

publisher = {Association des Annales de l'Institut Fourier},

title = {Resolutions of homogeneous bundles on $\{\mathbb \{P\}\}^2$},

url = {http://eudml.org/doc/116213},

volume = {55},

year = {2005},

}

TY - JOUR

AU - Ottaviani, Giorgio

AU - Rubei, Elena

TI - Resolutions of homogeneous bundles on ${\mathbb {P}}^2$

JO - Annales de l’institut Fourier

PY - 2005

PB - Association des Annales de l'Institut Fourier

VL - 55

IS - 3

SP - 973

EP - 1015

AB - We characterize minimal free resolutions of homogeneous bundles on ${\mathbb {P}}^2$. Besides
we study stability and simplicity of homogeneous bundles on ${\mathbb {P}}^2$ by means of
their minimal free resolutions; in particular we give a criterion to see when a
homogeneous bundle is simple by means of its minimal resolution in the case the first
bundle of the resolution is irreducible.

LA - eng

KW - homogeneous bundles; minimal resolutions; quivers

UR - http://eudml.org/doc/116213

ER -

## References

top- E. Ballico, On the stability of certain higher rank bundles on ${\mathbb{P}}^{n}$, Rend. Circ. Mat. Palermo 41 (1992), 309-314 Zbl0770.14009MR1196622
- A.I. Bondal, M.M. Kapranov, Homogeneous Bundles, Seminar Rudakov, Helices and Vector bundles 148 (1990), 45-55, Cambridge University Press Zbl0742.14011
- J.-M. Drézet, J. Le Potier, Fibrés stables et fibrés exeptionnels sur le plan projectif, Ann. Sci. École Norm. Sup., 4e série 18 (1985), 193-244 Zbl0586.14007MR816365
- S. Faini, On the stability and simplicity of homogeneous bundles Zbl1178.14012
- W. Fulton, J. Harris, Representation Theory, A First Course,, (1991), Springer Verlag Zbl0744.22001MR1153249
- P. Gabriel, A.V. Roiter, Algebra VIII: Representations of finite dimensional algebras, 73 (1992), Springer Verlag Zbl0839.16001MR1239446
- L. Hille, Homogeneous vector bundles and Koszul algebras, Math. Nach. 191 (1998), 189-195 Zbl0957.14035MR1621314
- L. Hille, Small homogeneous vector bundles, (1994) Zbl0935.14009
- G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. 14 (1964), 689-713 Zbl0126.16801MR169877
- M.M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), 479-508 Zbl0651.18008MR939472
- A. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), 515-530 Zbl0837.16005MR1315461
- L. Migliorini, Stability of homogeneous bundles, Boll. Unione Mat. Ital. Sez. B 10 (1996), 963-990 Zbl0885.14024MR1430162
- G. Ottaviani, E. Rubei, Quivers and the cohomology of homogeneous vector bundles Zbl1100.14012
- S. Ramanan, Holomorphic vector bundles on homogeneous spaces, Topology 5 (1966), 159-177 Zbl0138.18602MR190947
- R. Rohmfeld, Stability of homogeneous vector bundles on $\u2102{P}^{n}$, Geom. Dedicata 38 (1991), 159-166 Zbl0734.14004MR1104341
- D. Simpson, Linear representation of quivers

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.