On contact p -spheres

Mathias Zessin[1]

  • [1] Université de Mulhouse, laboratoire de mathématiques, 6 rue des frères Lumière, 68093 Mulhouse (France)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 4, page 1167-1194
  • ISSN: 0373-0956

Abstract

top
We study invariant contact p -spheres on principal circle-bundles and solve the corresponding existence problem in dimension 3. Moreover, we show that contact p - spheres can only exist on ( 4 n - 1 ) -dimensional manifolds and we construct examples of contact p -spheres on such manifolds. We also consider relations between tautness and roundness, a regularity property concerning the Reeb vector fields of the contact forms in a contact p -sphere.

How to cite

top

Zessin, Mathias. "On contact $p$-spheres." Annales de l’institut Fourier 55.4 (2005): 1167-1194. <http://eudml.org/doc/116216>.

@article{Zessin2005,
abstract = {We study invariant contact $p$-spheres on principal circle-bundles and solve the corresponding existence problem in dimension 3. Moreover, we show that contact $p$- spheres can only exist on $(4n-1)$-dimensional manifolds and we construct examples of contact $p$-spheres on such manifolds. We also consider relations between tautness and roundness, a regularity property concerning the Reeb vector fields of the contact forms in a contact $p$-sphere.},
affiliation = {Université de Mulhouse, laboratoire de mathématiques, 6 rue des frères Lumière, 68093 Mulhouse (France)},
author = {Zessin, Mathias},
journal = {Annales de l’institut Fourier},
keywords = {contact $p$-spheres; invariant contact forms; principal fibre bundles; contact p-spheres},
language = {eng},
number = {4},
pages = {1167-1194},
publisher = {Association des Annales de l'Institut Fourier},
title = {On contact $p$-spheres},
url = {http://eudml.org/doc/116216},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Zessin, Mathias
TI - On contact $p$-spheres
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 4
SP - 1167
EP - 1194
AB - We study invariant contact $p$-spheres on principal circle-bundles and solve the corresponding existence problem in dimension 3. Moreover, we show that contact $p$- spheres can only exist on $(4n-1)$-dimensional manifolds and we construct examples of contact $p$-spheres on such manifolds. We also consider relations between tautness and roundness, a regularity property concerning the Reeb vector fields of the contact forms in a contact $p$-sphere.
LA - eng
KW - contact $p$-spheres; invariant contact forms; principal fibre bundles; contact p-spheres
UR - http://eudml.org/doc/116216
ER -

References

top
  1. J. Adams, Vector fields on spheres, Bull. Amer. Math. Soc. 68 (1962), 39-41 Zbl0107.40403MR133837
  2. D. Blair, Contact Manifolds in Riemannian Geometry, 509 (1976), Springer Zbl0319.53026MR467588
  3. C. Boyer, K. Galicki, B. Mann, The geometry and topology of 3-Sasakian manifolds, J. reine u. angew. Math. 455 (1994), 183-220 Zbl0889.53029MR1293878
  4. H. Geiges, J. Gonzalo, Contact geometry and complex surfaces, Invent. Math. 121 (1995), 147-209 Zbl1002.53501MR1345288
  5. H. Geiges, J. Gonzalo, Contact Circles on 3-manifolds, J. Diff. Geometry 46 (1997), 236-286 Zbl0936.53048MR1484045
  6. J. W. Gray, Some global properties of contact structures, Ann. of Math. 69 (1959), 421-450 Zbl0092.39301MR112161
  7. B. Eckmann, Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischer Formen, Comm. Math. Helv. 15 (1943), 358-366 Zbl0028.10402MR8592
  8. R. Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier, Grenoble 27 (1977), 1-15 Zbl0328.53024MR478180
  9. R. Lutz, Sur la géométrie des structures de contact invariantes, Ann. Inst. Fourier, Grenoble 29 (1979), 283-306 Zbl0379.53011MR526789
  10. J. Martinet, Sur les singularités des formes différentielles, Ann. Inst. Fourier 20 (1970), 95-178 Zbl0189.10001MR286119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.