On contact -spheres
- [1] Université de Mulhouse, laboratoire de mathématiques, 6 rue des frères Lumière, 68093 Mulhouse (France)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 4, page 1167-1194
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topZessin, Mathias. "On contact $p$-spheres." Annales de l’institut Fourier 55.4 (2005): 1167-1194. <http://eudml.org/doc/116216>.
@article{Zessin2005,
abstract = {We study invariant contact $p$-spheres on principal circle-bundles and solve the
corresponding existence problem in dimension 3. Moreover, we show that contact $p$-
spheres can only exist on $(4n-1)$-dimensional manifolds and we construct examples of
contact $p$-spheres on such manifolds. We also consider relations between tautness and
roundness, a regularity property concerning the Reeb vector fields of the contact forms
in a contact $p$-sphere.},
affiliation = {Université de Mulhouse, laboratoire de mathématiques, 6 rue des frères Lumière, 68093 Mulhouse (France)},
author = {Zessin, Mathias},
journal = {Annales de l’institut Fourier},
keywords = {contact $p$-spheres; invariant contact forms; principal fibre bundles; contact p-spheres},
language = {eng},
number = {4},
pages = {1167-1194},
publisher = {Association des Annales de l'Institut Fourier},
title = {On contact $p$-spheres},
url = {http://eudml.org/doc/116216},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Zessin, Mathias
TI - On contact $p$-spheres
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 4
SP - 1167
EP - 1194
AB - We study invariant contact $p$-spheres on principal circle-bundles and solve the
corresponding existence problem in dimension 3. Moreover, we show that contact $p$-
spheres can only exist on $(4n-1)$-dimensional manifolds and we construct examples of
contact $p$-spheres on such manifolds. We also consider relations between tautness and
roundness, a regularity property concerning the Reeb vector fields of the contact forms
in a contact $p$-sphere.
LA - eng
KW - contact $p$-spheres; invariant contact forms; principal fibre bundles; contact p-spheres
UR - http://eudml.org/doc/116216
ER -
References
top- J. Adams, Vector fields on spheres, Bull. Amer. Math. Soc. 68 (1962), 39-41 Zbl0107.40403MR133837
- D. Blair, Contact Manifolds in Riemannian Geometry, 509 (1976), Springer Zbl0319.53026MR467588
- C. Boyer, K. Galicki, B. Mann, The geometry and topology of 3-Sasakian manifolds, J. reine u. angew. Math. 455 (1994), 183-220 Zbl0889.53029MR1293878
- H. Geiges, J. Gonzalo, Contact geometry and complex surfaces, Invent. Math. 121 (1995), 147-209 Zbl1002.53501MR1345288
- H. Geiges, J. Gonzalo, Contact Circles on 3-manifolds, J. Diff. Geometry 46 (1997), 236-286 Zbl0936.53048MR1484045
- J. W. Gray, Some global properties of contact structures, Ann. of Math. 69 (1959), 421-450 Zbl0092.39301MR112161
- B. Eckmann, Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischer Formen, Comm. Math. Helv. 15 (1943), 358-366 Zbl0028.10402MR8592
- R. Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier, Grenoble 27 (1977), 1-15 Zbl0328.53024MR478180
- R. Lutz, Sur la géométrie des structures de contact invariantes, Ann. Inst. Fourier, Grenoble 29 (1979), 283-306 Zbl0379.53011MR526789
- J. Martinet, Sur les singularités des formes différentielles, Ann. Inst. Fourier 20 (1970), 95-178 Zbl0189.10001MR286119
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.