Infinitely divisible Wald's couples. Examples linked with the Euler gamma and the Riemann zeta functions

Bernard Roynette[1]; Marc Yor

  • [1] Institut Elie Cartan, département de Mathématiques, B.P. 239, 54506 Vandoeuvre Les Nancy Cedex (France), Université Paris VI, Laboratoire de Probabilités et Modèles Aléatoires, Tour 56 - 3ème étage, 75252 Paris Cedex 05 (France)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 4, page 1219-1283
  • ISSN: 0373-0956

Abstract

top
To any positive measure c on + , such that : 0 ( x x 2 ) c ( d x ) < we associate an infinitely divisible Wald couple, i.e. : a couple of random variables ( X , H ) such that X and H are infinitely divisible, H 0 , and for any λ 0 , E ( e λ X ) · E ( e - λ 2 2 H ) = 1 . More generally, to a positive measure c on + which satisfies : 0 e - α x x 2 c ( d x ) < for every α > α 0 , we associate an “Esscher family” of infinitely divisible Wald couples. We give many examples of such Esscher families and we prove that the particular ones which are associated with the gamma and the zeta functions enjoy remarkable properties.

How to cite

top

Roynette, Bernard, and Yor, Marc. "Couples de Wald indéfiniment divisibles. Exemples liés à la fonction gamma d'Euler et à la fonction zeta de Riemann." Annales de l’institut Fourier 55.4 (2005): 1219-1283. <http://eudml.org/doc/116218>.

@article{Roynette2005,
abstract = {A toute mesure $c$ positive sur $\{\mathbb \{R\}_+\}$ telle que $\int ^\{\infty \}_0 (x \wedge x^2) c(dx) &lt; \{\infty \}$, nous associons un couple de Wald indéfiniment divisible, i.e. un couple de variables aléatoires $(X,H)$ tel que $X$ et $H$ sont indéfiniment divisibles, $H \ge 0$, et pour tout $\lambda \{\ge \} 0, E \big (e^\{\lambda X\} \big ) \cdot E \big (e^\{- \{\lambda ^2 \over 2\} H\}\big )=1$. Plus généralement, à une mesure $c$ positive sur $\{\mathbb \{R\}_+\}$ telle que $\int _0^\{\infty \}e^\{- \alpha x\} x^2 \; c(dx) &lt; \infty $ pour tout $\alpha &gt; \alpha _0$, nous associons une “famille d’Esscher” de couples de Wald indéfiniment divisibles. Nous donnons de nombreux exemples de telles familles d’Esscher. Celles liées à la fonction gamma et à la fonction zeta de Riemann possèdent des propriétés remarquables.},
affiliation = {Institut Elie Cartan, département de Mathématiques, B.P. 239, 54506 Vandoeuvre Les Nancy Cedex (France), Université Paris VI, Laboratoire de Probabilités et Modèles Aléatoires, Tour 56 - 3ème étage, 75252 Paris Cedex 05 (France)},
author = {Roynette, Bernard, Yor, Marc},
journal = {Annales de l’institut Fourier},
keywords = {Laplace transforms; infinitely divisible laws; Wald couples; gamma and zeta functions},
language = {fre},
number = {4},
pages = {1219-1283},
publisher = {Association des Annales de l'Institut Fourier},
title = {Couples de Wald indéfiniment divisibles. Exemples liés à la fonction gamma d'Euler et à la fonction zeta de Riemann},
url = {http://eudml.org/doc/116218},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Roynette, Bernard
AU - Yor, Marc
TI - Couples de Wald indéfiniment divisibles. Exemples liés à la fonction gamma d'Euler et à la fonction zeta de Riemann
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 4
SP - 1219
EP - 1283
AB - A toute mesure $c$ positive sur ${\mathbb {R}_+}$ telle que $\int ^{\infty }_0 (x \wedge x^2) c(dx) &lt; {\infty }$, nous associons un couple de Wald indéfiniment divisible, i.e. un couple de variables aléatoires $(X,H)$ tel que $X$ et $H$ sont indéfiniment divisibles, $H \ge 0$, et pour tout $\lambda {\ge } 0, E \big (e^{\lambda X} \big ) \cdot E \big (e^{- {\lambda ^2 \over 2} H}\big )=1$. Plus généralement, à une mesure $c$ positive sur ${\mathbb {R}_+}$ telle que $\int _0^{\infty }e^{- \alpha x} x^2 \; c(dx) &lt; \infty $ pour tout $\alpha &gt; \alpha _0$, nous associons une “famille d’Esscher” de couples de Wald indéfiniment divisibles. Nous donnons de nombreux exemples de telles familles d’Esscher. Celles liées à la fonction gamma et à la fonction zeta de Riemann possèdent des propriétés remarquables.
LA - fre
KW - Laplace transforms; infinitely divisible laws; Wald couples; gamma and zeta functions
UR - http://eudml.org/doc/116218
ER -

References

top
  1. C. Banderier, P. Flajolet, G. Schaeffer, M. Soria, Random maps, coalescing saddles, singularity analysis and Airy phenomena, Random Struct. Algor. 19 (2001), 194-246 Zbl1016.68179MR1871555
  2. P. Biane, La fonction zêta et les probabilités, (2003), Éditions de l'École Polytechnique MR1989224
  3. P. Biane, J. Pitman, M. Yor, Probabilistic interpretation of the Jacobi theta and the Riemann zeta functions, via Brownian excursions, Bull. AMS 38 (2001), 435-465 Zbl1040.11061MR1848256
  4. P. Biane, M. Yor, Valeurs principales associées aux temps locaux browniens, Bull. Sci. Math. 2 (1987), 23-101 Zbl0619.60072MR886959
  5. P. Bougerol, M. Babillot, L. Elie, The random difference equation X n = A n X n - 1 + B n in the critical case, Ann. Prob. 25 (1997), 478-493 Zbl0873.60045MR1428518
  6. M.F. Bru, Wishart processes, J. Theor. Prob. 4 (1991), 725-751 Zbl0737.60067MR1132135
  7. R. Campbell, Les intégrales eulériennes et leurs applications, (1966), Dunod Zbl0174.36201MR206342
  8. L. Chaumont, M. Yor, Exercises in Probability. A guided Tour from Measure Theory to Random Processes, via conditioning, (2003), Cambridge Series in Stat. and Prob. Math. Zbl1065.60001MR2016344
  9. C. Donati-Martin, Y. Doumerc, H. Matsumoto, M. Yor, Some properties of the Wishart processes and a matrix extension of the Hartman Watson laws, Publ. RIMS Kyoto Univ. 40 (2004), 1385-1412 Zbl1076.60067MR2105711
  10. C. Donati-Martin, R. Ghomrasni, M. Yor, Affine random equations and the stable 1 2 distribution, Stud. Sci. Math. Hung. 36 (2000), 347-405 Zbl0980.60023MR1798746
  11. B. De Meyer, B. Roynette, P. Vallois, M. Yor, On independent times and positions for Brownian motions, Rev. Mat. Iberoamericana 18 (2002), 541-586 Zbl1055.60078MR1954864
  12. A. Erdelyi, al., Higher transcendental Functions, I (1953), Mc Graw Hill Zbl0051.30303
  13. L. Gordon, A stochastic Approach to the Gamma Function, Amer. Math. Monthly 101 (1994), 858-865 Zbl0823.33001MR1300491
  14. B. Grigelionis, On the self decomposability of Euler's gamma function, trad. in Lituanian Math. 43 (2003), 295-385 Zbl1086.33002MR2019545
  15. P. Hartman, Completely monotone families of solutions of n -th order linear differential equations and infinitely divisible distributions, Ann. Scuola Normale Sup. Pisa IV-III (1976), 267-287 Zbl0386.34016MR404760
  16. M. Jeanblanc, J. Pitman, M. Yor, Self similar processes with independent increments associated with Lévy and Bessel Processes, Stoch. Proc. Appl. 100 (2002), 188-223 Zbl1059.60052MR1919614
  17. Z.J. Jurek, W. Vervaat, An integral representation for self-decomposable Banach space valued random variables, Zeit. Wahr. Verw. Gebiet 62 (1983), 247-262 Zbl0488.60028MR688989
  18. A.Ya. Khintchine, Limit for Sums of independent Random variables, (1938), Moscow and Lex 
  19. N.N. Lebedev, Special functions and their applications, (1972), Dover Pub. Inc. Zbl0271.33001MR350075
  20. J.F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, (1997), ETH Zürich, Birkhaüser Zbl0938.60003MR1714707
  21. G. Letac, A characterization of the Gamma distribution, Adv. App. Prob. 17 (1985), 911-912 Zbl0579.60013MR809436
  22. G.D. Lin, C.Y. Hu, The Riemann zeta distribution, Bernoulli 7 (2001), 817-828 Zbl0996.60013MR1867083
  23. E. Lukacs, Characteristic functions, 2nd ed., (1970), Griffin, London Zbl0201.20404MR346874
  24. E. Lukacs, Contribution to a problem of D. Van Dantzig, Th. Prob. Appl. XIII (1968), 116-127 Zbl0201.20701MR228039
  25. H. Matsumoto, L. Nguyen-Ngoc, M. Yor, Subordinators related to the exponential functionals of Brownian bridges and explicit formulae for the semigroups of hyperbolic Brownian motions, Proceedings École d'Hiver de Siegmundsburg, `Stochastic Processes and Related Topics' (2000), Taylor and Francis 
  26. M. Maejima, K. Sato, T. Watanabe, Completely operator self-decomposable distributions, Tokyo J. Math. 23 (2000), 235-253 Zbl0985.60014MR1763515
  27. R.J. Muirhead, Aspects of Multivariate Statistical Theory, (1982), Wiley Series in Prob. and Math. Stat. Zbl0556.62028MR652932
  28. S.J. Patterson, An introduction to the theory of the Riemann Zeta Function, (1988), Cambridge University Press Zbl0641.10029MR933558
  29. B. Riemann, Über die Anzahl der Primzahlen unter eine gegebner Grösse, Monatsber. Akad. Berlin (1859), 671-680 
  30. B. Roynette, P. Vallois, M. Yor, Limiting laws associated with brownian motion perturbed by normalized exponential weights, (2005) Zbl1121.60027
  31. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, (1999), Springer Verlag, Basel Zbl0917.60006MR1725357
  32. K. Sato, Lévy processes and infinitely divisible distributions, (1999), Cambridge Univ. Press. Zbl0973.60001MR1739520
  33. K. Sato, Self similar processes with independent increments, Prob. Th. Rel. Fields 89 (1991), 285-300 Zbl0725.60034MR1113220
  34. I.J. Schoenberg, On Polya Frequency Functions I, J. Anal. Math. 1 (1951), 331-374 Zbl0045.37602MR47732
  35. G. Valiron, Théorie des fonctions, 2e éd., (1955), Masson Zbl0028.20801
  36. M. Yor, Some aspects of Brownian Motion II, Some recent Martingales problems, (1997), ETZ Zürich, Birkhaüser Zbl0880.60082MR1442263
  37. M. Yor, Exponential functionals of Brownian Motion and Related Processes, (2001), Springer Finance Zbl0999.60004MR1854494
  38. M. Yor, Loi de l'indice du lacet brownien et distribution de Hartman Watson, Zeitschrift für Wahr. und Verw. Gebiete 53 (1980), 71-95 Zbl0436.60057MR576898
  39. E.T. Whittaker, G.N. Watson, A course of Modern Analysis, 4e éd., (1927), Cambridge University Press MR1424469
  40. V.M. Zolotarev, One dimensional Stable Distributions, 65 (1986), Amer. Math. Soc. Zbl0589.60015MR854867

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.