Zero distributions via orthogonality
Laurent Baratchart[1]; Reinhold Küstner; Vilmos Totik
- [1] INRIA, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex (France), Université de Provence, LATP, CMI, 39 rue F. Joliot-Curie, 13453 Marseille Cedex 13 (France), University of Szeged, Bolyai Institute, Aradi v. tere 1, 6720 (Hongrie), University of South Florida, department of mathematics, Tampa FL 33620 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 5, page 1455-1499
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- J.-E. Andersson, Best rational approximation to Markov functions, J. Approx. Theory 76 (1994), 219-232 Zbl0796.41014MR1268100
- L. Baratchart, V. Prokhorov, E.B. Saff, Best meromorphic approximation of Markov functions on the unit circle, Found. Comput. Math. 1 (2001), 385-416 Zbl1053.41019MR1857722
- L. Baratchart, F. Seyfert, An analog to AAK theory for , J. Funct. Anal. 191 (2002), 52-122 Zbl1050.47021MR1909264
- L. Baratchart, H. Stahl, F. Wielonsky, Non-uniqueness of rational best approximants, Continued Fractions and Geometric Function Theory (CONFUN), (Trondheim, 1997), J. Comput. Appl. Math. 105 (1999) Zbl0967.30022MR1690582
- L. Baratchart, H. Stahl, F. Wielonsky, Asymptotic error estimates for best rational approximants to Markov functions, J. Approx. Theory 108 (2001), 53-96 Zbl0973.41007MR1808854
- L. Baratchart, H. Stahl, F. Wielonsky, Asymptotic uniqueness of best rational approximants of given degree to Markov functions in of the circle, Constr. Approx. 17 (2001), 103-138 Zbl0983.30018MR1794804
- L. Baratchart, F. Wielonsky, Rational approximation in the real Hardy space and Stieltjes integrals: a uniqueness theorem, Constr. Approx. 9 (1993), 1-21 Zbl0769.30024MR1198520
- R.A. DeVore, G.G. Lorentz, Constructive Approximation, 303 (1993), Springer-Verlag, Berlin Zbl0797.41016MR1261635
- A.A. Gonchar, E.A. Rakhmanov, Equilibrium distributions and degree of rational approximation of analytic functions, Math. USSR Sb. 62 (1989), 305-348 Zbl0663.30039MR922628
- R. Kannan, C.K. Krueger, Advanced Analysis on the Real Line, (1996), Springer-Verlag, New York Zbl0855.26001
- H. Kestelman, An integral for functions of bounded variation, J. London Math. Soc. 9 (1934), 174-178 Zbl0009.30701
- R. Küstner, Asymptotic zero distribution of orthogonal polynomials with respect to complex measures having argument of bounded variation, (2003)
- A. Magnus, Toeplitz matrix techniques and convergence of complex weight Padé approximants, J. Comput. Appl. Math. 19 (1987), 23-38 Zbl0619.41014MR901209
- Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, 26 (2002), The Clarendon Press, Oxford Zbl1072.30006
- T. Ransford, Potential Theory in the Complex Plane, 28 (1995), Cambridge University Press, Cambridge Zbl0828.31001
- E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, 316 (1997), Springer-Verlag, Berlin Zbl0881.31001MR1485778
- H. Stahl, The convergence of Padé approximants to functions with branch points, J. Approx. Theory 2 (1997), 139-204 Zbl0896.41009MR1484040
- H. Stahl, Orthogonal polynomials with respect to complex-valued measures, Orthogonal Polynomials and their Applications (Erice, 1990), 9 (1990), 139-154, Baltzer, Basel Zbl0852.42009
- H. Stahl, Orthogonal polynomial with complex-valued weight functions I, II, Constr. Approx. 2 (1986), 225-240, 241251 Zbl0592.42016MR891973
- H. Stahl, V. Totik, General Orthogonal Polynomials, 43 (1992), Cambridge University Press, Cambridge Zbl0791.33009MR1163828
- J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, third edition, XX (1960), Amer. Math. Soc., Providence Zbl0106.28104MR218587