Zero distributions via orthogonality

Laurent Baratchart[1]; Reinhold Küstner; Vilmos Totik

  • [1] INRIA, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex (France), Université de Provence, LATP, CMI, 39 rue F. Joliot-Curie, 13453 Marseille Cedex 13 (France), University of Szeged, Bolyai Institute, Aradi v. tere 1, 6720 (Hongrie), University of South Florida, department of mathematics, Tampa FL 33620 (USA)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 5, page 1455-1499
  • ISSN: 0373-0956

Abstract

top
We develop a new method to prove asymptotic zero distribution for different kinds of orthogonal polynomials. The method directly uses the orthogonality relations. We illustrate the procedure in four cases: classical orthogonality, non-Hermitian orthogonality, orthogonality in rational approximation of Markov functions and its non- Hermitian variant.

How to cite

top

Baratchart, Laurent, Küstner, Reinhold, and Totik, Vilmos. "Zero distributions via orthogonality." Annales de l’institut Fourier 55.5 (2005): 1455-1499. <http://eudml.org/doc/116223>.

@article{Baratchart2005,
abstract = {We develop a new method to prove asymptotic zero distribution for different kinds of orthogonal polynomials. The method directly uses the orthogonality relations. We illustrate the procedure in four cases: classical orthogonality, non-Hermitian orthogonality, orthogonality in rational approximation of Markov functions and its non- Hermitian variant.},
affiliation = {INRIA, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex (France), Université de Provence, LATP, CMI, 39 rue F. Joliot-Curie, 13453 Marseille Cedex 13 (France), University of Szeged, Bolyai Institute, Aradi v. tere 1, 6720 (Hongrie), University of South Florida, department of mathematics, Tampa FL 33620 (USA)},
author = {Baratchart, Laurent, Küstner, Reinhold, Totik, Vilmos},
journal = {Annales de l’institut Fourier},
keywords = {orthogonal polynomials; zero distribution; logarithmic potential; rational approximation},
language = {eng},
number = {5},
pages = {1455-1499},
publisher = {Association des Annales de l'Institut Fourier},
title = {Zero distributions via orthogonality},
url = {http://eudml.org/doc/116223},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Baratchart, Laurent
AU - Küstner, Reinhold
AU - Totik, Vilmos
TI - Zero distributions via orthogonality
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 5
SP - 1455
EP - 1499
AB - We develop a new method to prove asymptotic zero distribution for different kinds of orthogonal polynomials. The method directly uses the orthogonality relations. We illustrate the procedure in four cases: classical orthogonality, non-Hermitian orthogonality, orthogonality in rational approximation of Markov functions and its non- Hermitian variant.
LA - eng
KW - orthogonal polynomials; zero distribution; logarithmic potential; rational approximation
UR - http://eudml.org/doc/116223
ER -

References

top
  1. J.-E. Andersson, Best rational approximation to Markov functions, J. Approx. Theory 76 (1994), 219-232 Zbl0796.41014MR1268100
  2. L. Baratchart, V. Prokhorov, E.B. Saff, Best meromorphic approximation of Markov functions on the unit circle, Found. Comput. Math. 1 (2001), 385-416 Zbl1053.41019MR1857722
  3. L. Baratchart, F. Seyfert, An L p analog to AAK theory for p 2 , J. Funct. Anal. 191 (2002), 52-122 Zbl1050.47021MR1909264
  4. L. Baratchart, H. Stahl, F. Wielonsky, Non-uniqueness of rational best approximants, Continued Fractions and Geometric Function Theory (CONFUN), (Trondheim, 1997), J. Comput. Appl. Math. 105 (1999) Zbl0967.30022MR1690582
  5. L. Baratchart, H. Stahl, F. Wielonsky, Asymptotic error estimates for L 2 best rational approximants to Markov functions, J. Approx. Theory 108 (2001), 53-96 Zbl0973.41007MR1808854
  6. L. Baratchart, H. Stahl, F. Wielonsky, Asymptotic uniqueness of best rational approximants of given degree to Markov functions in L 2 of the circle, Constr. Approx. 17 (2001), 103-138 Zbl0983.30018MR1794804
  7. L. Baratchart, F. Wielonsky, Rational approximation in the real Hardy space H 2 and Stieltjes integrals: a uniqueness theorem, Constr. Approx. 9 (1993), 1-21 Zbl0769.30024MR1198520
  8. R.A. DeVore, G.G. Lorentz, Constructive Approximation, 303 (1993), Springer-Verlag, Berlin Zbl0797.41016MR1261635
  9. A.A. Gonchar, E.A. Rakhmanov, Equilibrium distributions and degree of rational approximation of analytic functions, Math. USSR Sb. 62 (1989), 305-348 Zbl0663.30039MR922628
  10. R. Kannan, C.K. Krueger, Advanced Analysis on the Real Line, (1996), Springer-Verlag, New York Zbl0855.26001
  11. H. Kestelman, An integral for functions of bounded variation, J. London Math. Soc. 9 (1934), 174-178 Zbl0009.30701
  12. R. Küstner, Asymptotic zero distribution of orthogonal polynomials with respect to complex measures having argument of bounded variation, (2003) 
  13. A. Magnus, Toeplitz matrix techniques and convergence of complex weight Padé approximants, J. Comput. Appl. Math. 19 (1987), 23-38 Zbl0619.41014MR901209
  14. Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, 26 (2002), The Clarendon Press, Oxford Zbl1072.30006
  15. T. Ransford, Potential Theory in the Complex Plane, 28 (1995), Cambridge University Press, Cambridge Zbl0828.31001
  16. E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, 316 (1997), Springer-Verlag, Berlin Zbl0881.31001MR1485778
  17. H. Stahl, The convergence of Padé approximants to functions with branch points, J. Approx. Theory 2 (1997), 139-204 Zbl0896.41009MR1484040
  18. H. Stahl, Orthogonal polynomials with respect to complex-valued measures, Orthogonal Polynomials and their Applications (Erice, 1990), 9 (1990), 139-154, Baltzer, Basel Zbl0852.42009
  19. H. Stahl, Orthogonal polynomial with complex-valued weight functions I, II, Constr. Approx. 2 (1986), 225-240, 241–251 Zbl0592.42016MR891973
  20. H. Stahl, V. Totik, General Orthogonal Polynomials, 43 (1992), Cambridge University Press, Cambridge Zbl0791.33009MR1163828
  21. J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, third edition, XX (1960), Amer. Math. Soc., Providence Zbl0106.28104MR218587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.