Zero distributions via orthogonality
Laurent Baratchart[1]; Reinhold Küstner; Vilmos Totik
- [1] INRIA, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex (France), Université de Provence, LATP, CMI, 39 rue F. Joliot-Curie, 13453 Marseille Cedex 13 (France), University of Szeged, Bolyai Institute, Aradi v. tere 1, 6720 (Hongrie), University of South Florida, department of mathematics, Tampa FL 33620 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 5, page 1455-1499
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBaratchart, Laurent, Küstner, Reinhold, and Totik, Vilmos. "Zero distributions via orthogonality." Annales de l’institut Fourier 55.5 (2005): 1455-1499. <http://eudml.org/doc/116223>.
@article{Baratchart2005,
abstract = {We develop a new method to prove asymptotic zero distribution for different kinds of
orthogonal polynomials. The method directly uses the orthogonality relations. We
illustrate the procedure in four cases: classical orthogonality, non-Hermitian
orthogonality, orthogonality in rational approximation of Markov functions and its non-
Hermitian variant.},
affiliation = {INRIA, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex (France), Université de Provence, LATP, CMI, 39 rue F. Joliot-Curie, 13453 Marseille Cedex 13 (France), University of Szeged, Bolyai Institute, Aradi v. tere 1, 6720 (Hongrie), University of South Florida, department of mathematics, Tampa FL 33620 (USA)},
author = {Baratchart, Laurent, Küstner, Reinhold, Totik, Vilmos},
journal = {Annales de l’institut Fourier},
keywords = {orthogonal polynomials; zero distribution; logarithmic potential; rational approximation},
language = {eng},
number = {5},
pages = {1455-1499},
publisher = {Association des Annales de l'Institut Fourier},
title = {Zero distributions via orthogonality},
url = {http://eudml.org/doc/116223},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Baratchart, Laurent
AU - Küstner, Reinhold
AU - Totik, Vilmos
TI - Zero distributions via orthogonality
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 5
SP - 1455
EP - 1499
AB - We develop a new method to prove asymptotic zero distribution for different kinds of
orthogonal polynomials. The method directly uses the orthogonality relations. We
illustrate the procedure in four cases: classical orthogonality, non-Hermitian
orthogonality, orthogonality in rational approximation of Markov functions and its non-
Hermitian variant.
LA - eng
KW - orthogonal polynomials; zero distribution; logarithmic potential; rational approximation
UR - http://eudml.org/doc/116223
ER -
References
top- J.-E. Andersson, Best rational approximation to Markov functions, J. Approx. Theory 76 (1994), 219-232 Zbl0796.41014MR1268100
- L. Baratchart, V. Prokhorov, E.B. Saff, Best meromorphic approximation of Markov functions on the unit circle, Found. Comput. Math. 1 (2001), 385-416 Zbl1053.41019MR1857722
- L. Baratchart, F. Seyfert, An analog to AAK theory for , J. Funct. Anal. 191 (2002), 52-122 Zbl1050.47021MR1909264
- L. Baratchart, H. Stahl, F. Wielonsky, Non-uniqueness of rational best approximants, Continued Fractions and Geometric Function Theory (CONFUN), (Trondheim, 1997), J. Comput. Appl. Math. 105 (1999) Zbl0967.30022MR1690582
- L. Baratchart, H. Stahl, F. Wielonsky, Asymptotic error estimates for best rational approximants to Markov functions, J. Approx. Theory 108 (2001), 53-96 Zbl0973.41007MR1808854
- L. Baratchart, H. Stahl, F. Wielonsky, Asymptotic uniqueness of best rational approximants of given degree to Markov functions in of the circle, Constr. Approx. 17 (2001), 103-138 Zbl0983.30018MR1794804
- L. Baratchart, F. Wielonsky, Rational approximation in the real Hardy space and Stieltjes integrals: a uniqueness theorem, Constr. Approx. 9 (1993), 1-21 Zbl0769.30024MR1198520
- R.A. DeVore, G.G. Lorentz, Constructive Approximation, 303 (1993), Springer-Verlag, Berlin Zbl0797.41016MR1261635
- A.A. Gonchar, E.A. Rakhmanov, Equilibrium distributions and degree of rational approximation of analytic functions, Math. USSR Sb. 62 (1989), 305-348 Zbl0663.30039MR922628
- R. Kannan, C.K. Krueger, Advanced Analysis on the Real Line, (1996), Springer-Verlag, New York Zbl0855.26001
- H. Kestelman, An integral for functions of bounded variation, J. London Math. Soc. 9 (1934), 174-178 Zbl0009.30701
- R. Küstner, Asymptotic zero distribution of orthogonal polynomials with respect to complex measures having argument of bounded variation, (2003)
- A. Magnus, Toeplitz matrix techniques and convergence of complex weight Padé approximants, J. Comput. Appl. Math. 19 (1987), 23-38 Zbl0619.41014MR901209
- Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, 26 (2002), The Clarendon Press, Oxford Zbl1072.30006
- T. Ransford, Potential Theory in the Complex Plane, 28 (1995), Cambridge University Press, Cambridge Zbl0828.31001
- E.B. Saff, V. Totik, Logarithmic Potentials with External Fields, 316 (1997), Springer-Verlag, Berlin Zbl0881.31001MR1485778
- H. Stahl, The convergence of Padé approximants to functions with branch points, J. Approx. Theory 2 (1997), 139-204 Zbl0896.41009MR1484040
- H. Stahl, Orthogonal polynomials with respect to complex-valued measures, Orthogonal Polynomials and their Applications (Erice, 1990), 9 (1990), 139-154, Baltzer, Basel Zbl0852.42009
- H. Stahl, Orthogonal polynomial with complex-valued weight functions I, II, Constr. Approx. 2 (1986), 225-240, 241251 Zbl0592.42016MR891973
- H. Stahl, V. Totik, General Orthogonal Polynomials, 43 (1992), Cambridge University Press, Cambridge Zbl0791.33009MR1163828
- J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, third edition, XX (1960), Amer. Math. Soc., Providence Zbl0106.28104MR218587
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.