A Cantor regular set which does not have Markov's property
We consider a transient Hunt process in which the potential density satisfies the conditions: (a) for each , is finite continuous in ; (b) iff . In earlier papers Chung established an equilibrium principle, and Rao obtained a Riesz of decomposition for excessive functions. We now begin a deeper study under these conditions, including the uniqueness of the decomposition and Hunt’s hypothesis (B).
Le problème de Painlevé consiste à trouver une caractérisation géométrique des sous-ensembles du plan complexe qui sont effaçables pour les fonctions holomorphes bornées. Ce problème d’analyse complexe a connu ces dernières années des avancées étonnantes, essentiellement grâce au dévelopement de techniques fines d’analyse réelle et de théorie de la mesure géométrique. Dans cet exposé, nous allons présenter et discuter une solution proposée par X. Tolsa en termes de courbure de Menger au problème...
We prove that the dimension of the harmonic measure of the complementary of a translation-invariant type of Cantor sets is a continuous function of the parameters determining these sets. This results extends a previous one of the author and do not use ergotic theoretic tools, not applicables to our case.