Weak solutions to the complex Hessian equation

Zbigniew Blocki[1]

  • [1] Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Kraków (Pologne)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 5, page 1735-1756
  • ISSN: 0373-0956

Abstract

top
We investigate the class of functions associated with the complex Hessian equation ( d d c u ) m ω n - m = 0 .

How to cite

top

Blocki, Zbigniew. "Weak solutions to the complex Hessian equation." Annales de l’institut Fourier 55.5 (2005): 1735-1756. <http://eudml.org/doc/116230>.

@article{Blocki2005,
abstract = {We investigate the class of functions associated with the complex Hessian equation $(dd^cu)^m\wedge \omega ^\{n-m\}=0$.},
affiliation = {Jagiellonian University, Institute of Mathematics, Reymonta 4, 30-059 Kraków (Pologne)},
author = {Blocki, Zbigniew},
journal = {Annales de l’institut Fourier},
keywords = {Complex Hessian equation; plurisubharmonic functions},
language = {eng},
number = {5},
pages = {1735-1756},
publisher = {Association des Annales de l'Institut Fourier},
title = {Weak solutions to the complex Hessian equation},
url = {http://eudml.org/doc/116230},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Blocki, Zbigniew
TI - Weak solutions to the complex Hessian equation
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 5
SP - 1735
EP - 1756
AB - We investigate the class of functions associated with the complex Hessian equation $(dd^cu)^m\wedge \omega ^{n-m}=0$.
LA - eng
KW - Complex Hessian equation; plurisubharmonic functions
UR - http://eudml.org/doc/116230
ER -

References

top
  1. E. Bedford, B.A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44 Zbl0315.31007MR445006
  2. E. Bedford, B.A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-41 Zbl0547.32012MR674165
  3. Z. Blocki, Estimates for the complex Monge-Ampère operator, Bull. Pol. Acad. Sci. 41 (1993), 151-157 Zbl0795.32003MR1414762
  4. Z. Blocki, On the definition of the Monge-Ampère operator in 2 , Math. Ann. 328 (2004), 415-423 Zbl1060.32018MR2036329
  5. Z. Blocki, The domain of definition of the complex Monge-Ampère operator Zbl1102.32018
  6. B. Bojarski, T. Iwaniec, Another approach to Liouville theorem, Math. Nachr. 107 (1982), 253-262 Zbl0527.30013MR695751
  7. L. Caffarelli, J.J. Kohn, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38 (1985), 209-252 Zbl0598.35048MR780073
  8. L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261-301 Zbl0654.35031MR806416
  9. U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier 54 (2004), 159-179 Zbl1065.32020MR2069125
  10. J.-P. Demailly, Mesures de Monge-Ampère et mesures plurisousharmoniques, Math. Z. 194 (1987), 519-564 Zbl0595.32006MR881709
  11. J.-P. Demailly, Potential theory in several complex variables, (1991) 
  12. J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory Complex analysis and geometry, Univ. Ser. Math., Plenum, New York (1993), 115-193 Zbl0792.32006MR1211880
  13. J.-P. Demailly, Complex Analytic and Differential Geometry, (1997) 
  14. L. Garding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957-965 Zbl0090.01603MR113978
  15. P. Guan, X.-N. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation, Invent. Math. 151 (2003), 553-577 Zbl1213.35213MR1961338
  16. N. Ivochkina, N.S. Trudinger, X.-J. Wang, The Dirichlet problem for degenerate Hessian equations, Comm. Partial Diff. Equations 29 (2004), 219-235 Zbl1140.35418MR2038151
  17. T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Clarendon Press (2001) Zbl1045.30011MR1859913
  18. M. Klimek, Pluripotential Theory, (1991), Clarendon Press Zbl0742.31001MR1150978
  19. N.V. Krylov, On the general notion of fully nonlinear second-order elliptic equations, Trans. Amer. Math. Soc. 347 (1995), 857-895 Zbl0832.35042MR1284912
  20. S.-Y. Li, On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian, Asian J. Math. 8 (2004), 87-106 Zbl1068.32024MR2128299
  21. N.S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995), 151-164 Zbl0887.35061MR1368245
  22. N.S. Trudinger, X.-J. Wang, Hessian measures II, Ann. of Math. 150 (1999), 579-604 Zbl0947.35055MR1726702
  23. J.B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968), 143-148 Zbl0159.16002MR227465
  24. A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J. 50 (2001), 671-703 Zbl1138.31302MR1857051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.