Equivariant deformations of semi-stable curves

José Bertin[1]; Sylvain Maugeais

  • [1] Institut Fourier, BP 74, 38402 Saint-Martin d'Hères cedex (France), SFB 478, geometrische str. in der mathematik, hittorfstr. 27, 48149 Münster (Allemagne)

Annales de l’institut Fourier (2005)

  • Volume: 55, Issue: 6, page 1905-1941
  • ISSN: 0373-0956

Abstract

top
In this paper we study deformation theory of wildly ramified Galois coverings between stables curves. We first study the local aspects concerning a formal double point with a p -group as inertia group, and then the global case. We compare global obstructions and local obstructions to the lifting problem.

How to cite

top

Bertin, José, and Maugeais, Sylvain. "Déformations équivariantes des courbes semistables." Annales de l’institut Fourier 55.6 (2005): 1905-1941. <http://eudml.org/doc/116238>.

@article{Bertin2005,
abstract = {Nous étudions la théorie des déformations des revêtements galoisiens sauvagement ramifiés entre courbes stables. On examine d’abord les problèmes locaux, point double formel avec pour groupe d’inertie un $p$-groupe, puis le cas global. On compare enfin les obstructions globales au relèvement aux obstructions locales.},
affiliation = {Institut Fourier, BP 74, 38402 Saint-Martin d'Hères cedex (France), SFB 478, geometrische str. in der mathematik, hittorfstr. 27, 48149 Münster (Allemagne)},
author = {Bertin, José, Maugeais, Sylvain},
journal = {Annales de l’institut Fourier},
keywords = {covering; deformation; double point},
language = {fre},
number = {6},
pages = {1905-1941},
publisher = {Association des Annales de l'Institut Fourier},
title = {Déformations équivariantes des courbes semistables},
url = {http://eudml.org/doc/116238},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Bertin, José
AU - Maugeais, Sylvain
TI - Déformations équivariantes des courbes semistables
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 6
SP - 1905
EP - 1941
AB - Nous étudions la théorie des déformations des revêtements galoisiens sauvagement ramifiés entre courbes stables. On examine d’abord les problèmes locaux, point double formel avec pour groupe d’inertie un $p$-groupe, puis le cas global. On compare enfin les obstructions globales au relèvement aux obstructions locales.
LA - fre
KW - covering; deformation; double point
UR - http://eudml.org/doc/116238
ER -

References

top
  1. D. Abramovich, Raynaud's group-scheme and reduction of coverings Zbl1279.14035
  2. J. Bertin, A. Mézard, Déformations formelles des revêtements sauvagement ramifiés, Inv. Math. 141 (2000), 195-238 Zbl0993.14014MR1767273
  3. J. Bertin, A. Mézard, Déformations formelles de revêtements : un principe local-global Zbl1133.14011
  4. J. Bertin, M. Romagny, Champs de Hurwitz, (2005) Zbl1242.14025
  5. G. Cornelissen, F. Kato, Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math J. 116 (2003), 431-470 Zbl1092.14032MR1958094
  6. P. Deligne, D. Mumford, The irreducibilty of the space of curves of a given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109 Zbl0181.48803MR262240
  7. T. Ekedahl, Boundary behaviour of Hurwitz schemes in The moduli space of curves (Texel Island, 1994), Progr. Math. 129 (1995), 173-198 Zbl0862.14018MR1363057
  8. A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), 119-221 Zbl0118.26104MR102537
  9. J. Harris, D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), 23-86 Zbl0506.14016MR664324
  10. T.J. Jarvis, Torsion free sheaves and the moduli space of higher spin curves, Compositio. Math. 110 (1998), 291-333 Zbl0912.14010MR1602060
  11. S. Maugeais, Relèvement des revêtements p -cycliques des courbes rationnelles semi-stables, Math. Ann. 327 (2003), 365-393 Zbl1073.14042MR2015076
  12. S. Maugeais, Déformations équivariantes des courbes stables, (2003) Zbl1073.14042
  13. A. Okounkov, R. Pandharipande, Gromov-Witten theory, Hurwitz numbers, and Matrix models I Zbl1205.14072
  14. R. Pries, Deformation of Wildly ramified Actions on Curves Zbl1059.14033
  15. J.P. Serre, Corps locaux, Hermann Zbl0137.02601
  16. J. Wahl, Equisingular deformation of plane algebroid curves, Trans. Amer. Math. Soc. 193 (1974), 143-170 Zbl0294.14007MR419439
  17. S. Wewers, Formal deformation of curves with group scheme action, (2003) Zbl1079.14006
  18. S. Wewers, Deformation of tame admissible covers of curves, 256 (1999), London Math. Soc. Zbl0995.14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.