Local cohomology multiplicities in terms of étale cohomology

Manuel Blickle[1]; Raphaël Bondu[2]

  • [1] Universität Essen, FB6 Mathematik, 45117 Essen (Allemagne)
  • [2] 9 rue des Ternes, 75017 Paris (France)

Annales de l'institut Fourier (2005)

  • Volume: 55, Issue: 7, page 2239-2256
  • ISSN: 0373-0956

Abstract

top
Using a recently introduced correspondence of Emerton-Kisin we give a description of Lyubeznik’s local cohomology invariants in terms of local étale cohomology with 𝐙 / p 𝐙 coefficients.

How to cite

top

Blickle, Manuel, and Bondu, Raphaël. "Local cohomology multiplicities in terms of étale cohomology." Annales de l'institut Fourier 55.7 (2005): 2239-2256. <http://eudml.org/doc/116253>.

@article{Blickle2005,
abstract = {Using a recently introduced correspondence of Emerton-Kisin we give a description of Lyubeznik’s local cohomology invariants in terms of local étale cohomology with $\{\bf Z\}/p\bf Z$ coefficients.},
affiliation = {Universität Essen, FB6 Mathematik, 45117 Essen (Allemagne); 9 rue des Ternes, 75017 Paris (France)},
author = {Blickle, Manuel, Bondu, Raphaël},
journal = {Annales de l'institut Fourier},
keywords = {Local cohomology; characteristic $p$; perverse sheaves; local cohomology; characteristic },
language = {eng},
number = {7},
pages = {2239-2256},
publisher = {Association des Annales de l'Institut Fourier},
title = {Local cohomology multiplicities in terms of étale cohomology},
url = {http://eudml.org/doc/116253},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Blickle, Manuel
AU - Bondu, Raphaël
TI - Local cohomology multiplicities in terms of étale cohomology
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2239
EP - 2256
AB - Using a recently introduced correspondence of Emerton-Kisin we give a description of Lyubeznik’s local cohomology invariants in terms of local étale cohomology with ${\bf Z}/p\bf Z$ coefficients.
LA - eng
KW - Local cohomology; characteristic $p$; perverse sheaves; local cohomology; characteristic
UR - http://eudml.org/doc/116253
ER -

References

top
  1. J.-L. Brylinski, M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), 387-410 Zbl0473.22009MR632980
  2. M. Blickle, The intersection homology D -module in finite characteristic, Math. Ann. 328 (2004), 425-450 Zbl1065.14006MR2036330
  3. M. Blickle, The intersection homology D -module in positive characteristic, (2001) Zbl1065.14006
  4. A. Borel| et al, Intersection cohomology, 50 (1984), Birkhäuser Boston Inc., Boston, MA Zbl0553.14002
  5. M. Emerton, M. Kisin, An introduction to the Riemann-Hilbert correspondence for unit -crystals., Geometric aspects of Dwork theory I, II (2004), 677-700, Walter de Gruyter GmbH & Co. KG, Berlin Zbl1104.14012MR2099082
  6. M. Emerton, M. Kisin, Riemann-Hilbert correspondence for unit -crystals., Astérisque (2004) Zbl1056.14025MR2071510
  7. O. Gabber, Notes on some t -structures, (2000) Zbl1074.14018
  8. R. GarcÍa, López, C. Sabbah, Topological computation of local cohomology multiplicities, Collect. Math. 49 (1998), 317-324 Zbl0940.13015MR1677136
  9. R. Hartshorne, R. Speiser, Local cohomological dimension in characteristic p , Annals of Mathematics 105 (1977), 45-79 Zbl0362.14002MR441962
  10. C.L. Huneke, Ro.Y. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc. 339 (1993), 765-779 Zbl0785.13005MR1124167
  11. C. Huneke, Tight closure and its applications, (1996), Washington, DC Zbl0930.13004MR1377268
  12. M. Kashiwara, P. Schapira, Sheaves on manifolds, 292 (1990), Springer-Verlag Zbl0709.18001MR1074006
  13. R. Kiehl, R. Weissauer, Weil conjectures, perverse sheaves and l ’adic Fourier transform, 42 (2001), Springer-Verlag, Berlin Zbl0988.14009MR1855066
  14. G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D -modules to commutative algebra), Invent. Math. 113 (1993), 41-55 Zbl0795.13004MR1223223
  15. G. Lyubeznik, -modules: an application to local cohomology and D -modules in characteristic p g t ; 0 , Journal für reine und angewandte Mathematik 491 (1997), 65-130 Zbl0904.13003MR1476089
  16. D. B. Massey, Intersection Cohomology, Monodromy, and the Milnor Fiber Zbl1183.32009
  17. J. S. Milne, Étale cohomology, (1980), Princeton University Press, Princeton, New Jersey Zbl0433.14012MR559531
  18. A. Ogus, Local cohomological dimension of algebraic varieties, Ann. of Math. 98 (1973), 327-365 Zbl0308.14003MR506248
  19. T. Torrelli, Intersection homology D-module and Bernstein polynomials associated with a complete intersection, (2004) Zbl1172.32007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.