Loading [MathJax]/extensions/MathZoom.js
In this short note we give an elementary combinatorial argument, showing that the conjecture of J. Fernández de Bobadilla, I. Luengo-Velasco, A. Melle-Hernández and A. Némethi [Proc. London Math. Soc. 92 (2006), 99-138, Conjecture 1] follows from Theorem 5.4 of Brodzik and Livingston [arXiv:1304.1062] in the case of rational cuspidal curves with two critical points.
Let be a complete Noetherian local ring, an ideal of and a nonzero Artinian -module. In this paper it is shown that if is a prime ideal of such that and is not finitely generated and for each the -module is of finite length, then the -module is not of finite length. Using this result, it is shown that for all finitely generated -modules with and for all integers , the -modules are of finite length, if and only if, for all finitely generated -modules with and...
The Castelnuovo-Mumford regularity is one of the most important invariants in studying the minimal free resolution of the defining ideals of the projective varieties. There are some bounds on the Castelnuovo-Mumford regularity of the projective variety in terms of the other basic invariants such as dimension, codimension and degree. This paper studies a bound on the regularity conjectured by Hoa, and shows this bound and extremal examples in the case of divisors on rational normal scrolls.
Let be a commutative Noetherian regular local ring of dimension and be a proper ideal of such that . It is shown that the -module is -cofinite if and only if . Also we present a sufficient condition under which this condition the -module is finitely generated if and only if it vanishes.
Let R be a Noetherian ring and I an ideal of R. Let M be an I-cofinite and N a finitely generated R-module. It is shown that the R-modules are I-cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 1 or dim Supp(N) ≤ 2. This immediately implies that if I has dimension one (i.e., dim R/I = 1) then the R-modules are I-cofinite for all i,j ≥ 0. Also, we prove that if R is local, then the R-modules are I-weakly cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 2 or dim Supp(N) ≤ 3. Finally, it is shown that...
Let denote an ideal in a Noetherian ring R, and M a finitely generated R-module. We introduce the concept of the cohomological dimension filtration , where c = cd(,M) and denotes the largest submodule of M such that . Some properties of this filtration are investigated. In particular, if (R,) is local and c = dim M, we are able to determine the annihilator of the top local cohomology module , namely . As a consequence, there exists an ideal of R such that . This generalizes the main results...
We propose a new method for defining a notion of support for objects in any compactly generated triangulated category admitting small coproducts. This approach is based on a construction of local cohomology functors on triangulated categories, with respect to a central ring of operators. Special cases are, for example, the theory for commutative noetherian rings due to Foxby and Neeman, the theory of Avramov and Buchweitz for complete intersection local rings, and varieties for representations of...
Currently displaying 1 –
20 of
51