Cramér's formula for Heisenberg manifolds
Mahta Khosravi[1]; John A. Toth[1]
- [1] McGill University, Department of Mathematics and Statistics, 805 Sherbrooke St. West, Montreal, Quebec H3A 2K6 (Canada)
Annales de l'institut Fourier (2005)
- Volume: 55, Issue: 7, page 2489-2520
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKhosravi, Mahta, and Toth, John A.. "Cramér's formula for Heisenberg manifolds." Annales de l'institut Fourier 55.7 (2005): 2489-2520. <http://eudml.org/doc/116261>.
@article{Khosravi2005,
abstract = {Let $R(\lambda )$ be the error term in Weyl’s law for a 3-dimensional Riemannian Heisenberg manifold. We prove that
$ \int _1^T \vert R(t)\vert ^2 dt =c T^\{\{5\} \over \{2\}\}+O_\{\delta \}(T^\{\{\{9\} \over \{4\}\}+\delta \}) $, where $c$ is a specific nonzero constant and $\delta $ is an arbitrary small positive number. This is consistent with the conjecture of Petridis and Toth stating that
$R(t)=O_\{\delta \}(t^\{\{\{3\} \over \{4\}\}+\delta \})$.The idea of the proof is to use the Poisson summation formula to write the error term in a form which can be estimated by the method of the stationary phase. The similar result will be also proven in the $2n+1$-dimensional case.},
affiliation = {McGill University, Department of Mathematics and Statistics, 805 Sherbrooke St. West, Montreal, Quebec H3A 2K6 (Canada); McGill University, Department of Mathematics and Statistics, 805 Sherbrooke St. West, Montreal, Quebec H3A 2K6 (Canada)},
author = {Khosravi, Mahta, Toth, John A.},
journal = {Annales de l'institut Fourier},
keywords = {Heisenberg manifolds; Weyl's law; Cramér's formula; poisson summation formula; Cramér’s formula; Poisson summation formula},
language = {eng},
number = {7},
pages = {2489-2520},
publisher = {Association des Annales de l'Institut Fourier},
title = {Cramér's formula for Heisenberg manifolds},
url = {http://eudml.org/doc/116261},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Khosravi, Mahta
AU - Toth, John A.
TI - Cramér's formula for Heisenberg manifolds
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2489
EP - 2520
AB - Let $R(\lambda )$ be the error term in Weyl’s law for a 3-dimensional Riemannian Heisenberg manifold. We prove that
$ \int _1^T \vert R(t)\vert ^2 dt =c T^{{5} \over {2}}+O_{\delta }(T^{{{9} \over {4}}+\delta }) $, where $c$ is a specific nonzero constant and $\delta $ is an arbitrary small positive number. This is consistent with the conjecture of Petridis and Toth stating that
$R(t)=O_{\delta }(t^{{{3} \over {4}}+\delta })$.The idea of the proof is to use the Poisson summation formula to write the error term in a form which can be estimated by the method of the stationary phase. The similar result will be also proven in the $2n+1$-dimensional case.
LA - eng
KW - Heisenberg manifolds; Weyl's law; Cramér's formula; poisson summation formula; Cramér’s formula; Poisson summation formula
UR - http://eudml.org/doc/116261
ER -
References
top- V. Bentkus, F. Götze, Lattice point problems and distribution of values of quadratic forms, Ann. of Math. 50:3 (1999), 977-1027 Zbl0979.11048MR1740988
- P.H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155 (1977), 249-276 Zbl0341.35052MR455055
- P. Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67 (1992), 461-481 Zbl0762.11031MR1181309
- L. Butler, Integrable geodesic flows on -step nilmanifolds, J. Geom. Phys. 36 (2000), 315-323 Zbl0989.53051MR1793014
- Y. Colin de Verdière, Spectre conjoint d'opérateurs pseudo-diifférentiels qui commtent. II. Le cas intégrable, Math. Z. 171 (1980), 51-73 Zbl0478.35073MR566483
- E.T. Copson, Asymptotic Expansions, Cambridge University Press (1965), 29-33 Zbl0123.26001MR168979
- D. Chung, Y.N. Petridis, J.A. Toth, The remained in Weyl's law for Heisenberg manifolds II, Bonner Mathematische Schriften, Bonn 360 (2003) Zbl1175.58008MR2075620
- H. Cramér, Über zwei Sätze von Herrn G.H. Hardy, Math. Z. 15 (1922), 201-210 MR1544568
- J.J. Duistermaat, V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), 39-79 Zbl0307.35071MR405514
- G.B. Folland, Harmonic Analysis in Phase Space, Princeton University Press (1989), 9-73 Zbl0682.43001MR983366
- F. Fricker, Einführung in die Gitterpunketlehre, [Introduction to lattice point theory], Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften(LMW) 73 (1982), Birkhäuser Verlag, Basel-Boston, Mas. Zbl0489.10001MR673938
- F. Götze, Lattice point problems and values of quadratic forms, Inventiones Mathematicae 157 (2004), 195-226 Zbl1090.11063MR2135188
- C. Gordon, E. Wilson, The spectrum of the Laplacian on Reimannian Heisenberg manifolds, Michigan Math. J. 33 (1986), 253-271 Zbl0599.53038MR837583
- G.H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263-283 Zbl45.1253.01
- L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218 Zbl0164.13201MR609014
- M.N. Huxley, Exponential sums and lattice points, II, Proc. London Math. Soc. 66 (1993), 279-301 Zbl0820.11060MR1199067
- V.YA. Ivrii, Precise Spectral Asymptotics for elliptic Operators Acting in Fibrings over Manifolds with Boundary, Springer Lecture Notes in Mathematics 1100 (1984) Zbl0565.35002MR771297
- M. Khosravi, Y.N. Petridis, The remainder in Weyl's law for n-Dimensional Heisenberg manifolds Zbl1080.35054
- Y.N. Petridis, J.A. Toth, The remainder in Weyl's law for Heisenberg manifolds, J. Diff. Geom. 60 (2002), 455-483 Zbl1066.58017MR1950173
- E.M. Stein, Harmonic Analysis, Princeton University Press (1993), 527-574 Zbl0821.42001MR1232192
- A.V. Volovoy, Improved two-term asymptotics for the eigenvalue distribution function of an ellitic operator on a compact manifold, Comm. Partial Differential Equations 15 (1990), 1509-1563 Zbl0724.35081MR1079602
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.