Cramér's formula for Heisenberg manifolds

Mahta Khosravi[1]; John A. Toth[1]

  • [1] McGill University, Department of Mathematics and Statistics, 805 Sherbrooke St. West, Montreal, Quebec H3A 2K6 (Canada)

Annales de l'institut Fourier (2005)

  • Volume: 55, Issue: 7, page 2489-2520
  • ISSN: 0373-0956

Abstract

top
Let R ( λ ) be the error term in Weyl’s law for a 3-dimensional Riemannian Heisenberg manifold. We prove that 1 T | R ( t ) | 2 d t = c T 5 2 + O δ ( T 9 4 + δ ) , where c is a specific nonzero constant and δ is an arbitrary small positive number. This is consistent with the conjecture of Petridis and Toth stating that R ( t ) = O δ ( t 3 4 + δ ) .The idea of the proof is to use the Poisson summation formula to write the error term in a form which can be estimated by the method of the stationary phase. The similar result will be also proven in the 2 n + 1 -dimensional case.

How to cite

top

Khosravi, Mahta, and Toth, John A.. "Cramér's formula for Heisenberg manifolds." Annales de l'institut Fourier 55.7 (2005): 2489-2520. <http://eudml.org/doc/116261>.

@article{Khosravi2005,
abstract = {Let $R(\lambda )$ be the error term in Weyl’s law for a 3-dimensional Riemannian Heisenberg manifold. We prove that $ \int _1^T \vert R(t)\vert ^2 dt =c T^\{\{5\} \over \{2\}\}+O_\{\delta \}(T^\{\{\{9\} \over \{4\}\}+\delta \}) $, where $c$ is a specific nonzero constant and $\delta $ is an arbitrary small positive number. This is consistent with the conjecture of Petridis and Toth stating that $R(t)=O_\{\delta \}(t^\{\{\{3\} \over \{4\}\}+\delta \})$.The idea of the proof is to use the Poisson summation formula to write the error term in a form which can be estimated by the method of the stationary phase. The similar result will be also proven in the $2n+1$-dimensional case.},
affiliation = {McGill University, Department of Mathematics and Statistics, 805 Sherbrooke St. West, Montreal, Quebec H3A 2K6 (Canada); McGill University, Department of Mathematics and Statistics, 805 Sherbrooke St. West, Montreal, Quebec H3A 2K6 (Canada)},
author = {Khosravi, Mahta, Toth, John A.},
journal = {Annales de l'institut Fourier},
keywords = {Heisenberg manifolds; Weyl's law; Cramér's formula; poisson summation formula; Cramér’s formula; Poisson summation formula},
language = {eng},
number = {7},
pages = {2489-2520},
publisher = {Association des Annales de l'Institut Fourier},
title = {Cramér's formula for Heisenberg manifolds},
url = {http://eudml.org/doc/116261},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Khosravi, Mahta
AU - Toth, John A.
TI - Cramér's formula for Heisenberg manifolds
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2489
EP - 2520
AB - Let $R(\lambda )$ be the error term in Weyl’s law for a 3-dimensional Riemannian Heisenberg manifold. We prove that $ \int _1^T \vert R(t)\vert ^2 dt =c T^{{5} \over {2}}+O_{\delta }(T^{{{9} \over {4}}+\delta }) $, where $c$ is a specific nonzero constant and $\delta $ is an arbitrary small positive number. This is consistent with the conjecture of Petridis and Toth stating that $R(t)=O_{\delta }(t^{{{3} \over {4}}+\delta })$.The idea of the proof is to use the Poisson summation formula to write the error term in a form which can be estimated by the method of the stationary phase. The similar result will be also proven in the $2n+1$-dimensional case.
LA - eng
KW - Heisenberg manifolds; Weyl's law; Cramér's formula; poisson summation formula; Cramér’s formula; Poisson summation formula
UR - http://eudml.org/doc/116261
ER -

References

top
  1. V. Bentkus, F. Götze, Lattice point problems and distribution of values of quadratic forms, Ann. of Math. 50:3 (1999), 977-1027 Zbl0979.11048MR1740988
  2. P.H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155 (1977), 249-276 Zbl0341.35052MR455055
  3. P. Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67 (1992), 461-481 Zbl0762.11031MR1181309
  4. L. Butler, Integrable geodesic flows on n -step nilmanifolds, J. Geom. Phys. 36 (2000), 315-323 Zbl0989.53051MR1793014
  5. Y. Colin de Verdière, Spectre conjoint d'opérateurs pseudo-diifférentiels qui commtent. II. Le cas intégrable, Math. Z. 171 (1980), 51-73 Zbl0478.35073MR566483
  6. E.T. Copson, Asymptotic Expansions, Cambridge University Press (1965), 29-33 Zbl0123.26001MR168979
  7. D. Chung, Y.N. Petridis, J.A. Toth, The remained in Weyl's law for Heisenberg manifolds II, Bonner Mathematische Schriften, Bonn 360 (2003) Zbl1175.58008MR2075620
  8. H. Cramér, Über zwei Sätze von Herrn G.H. Hardy, Math. Z. 15 (1922), 201-210 MR1544568
  9. J.J. Duistermaat, V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), 39-79 Zbl0307.35071MR405514
  10. G.B. Folland, Harmonic Analysis in Phase Space, Princeton University Press (1989), 9-73 Zbl0682.43001MR983366
  11. F. Fricker, Einführung in die Gitterpunketlehre, [Introduction to lattice point theory], Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften(LMW) 73 (1982), Birkhäuser Verlag, Basel-Boston, Mas. Zbl0489.10001MR673938
  12. F. Götze, Lattice point problems and values of quadratic forms, Inventiones Mathematicae 157 (2004), 195-226 Zbl1090.11063MR2135188
  13. C. Gordon, E. Wilson, The spectrum of the Laplacian on Reimannian Heisenberg manifolds, Michigan Math. J. 33 (1986), 253-271 Zbl0599.53038MR837583
  14. G.H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math. 46 (1915), 263-283 Zbl45.1253.01
  15. L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218 Zbl0164.13201MR609014
  16. M.N. Huxley, Exponential sums and lattice points, II, Proc. London Math. Soc. 66 (1993), 279-301 Zbl0820.11060MR1199067
  17. V.YA. Ivrii, Precise Spectral Asymptotics for elliptic Operators Acting in Fibrings over Manifolds with Boundary, Springer Lecture Notes in Mathematics 1100 (1984) Zbl0565.35002MR771297
  18. M. Khosravi, Y.N. Petridis, The remainder in Weyl's law for n-Dimensional Heisenberg manifolds Zbl1080.35054
  19. Y.N. Petridis, J.A. Toth, The remainder in Weyl's law for Heisenberg manifolds, J. Diff. Geom. 60 (2002), 455-483 Zbl1066.58017MR1950173
  20. E.M. Stein, Harmonic Analysis, Princeton University Press (1993), 527-574 Zbl0821.42001MR1232192
  21. A.V. Volovoy, Improved two-term asymptotics for the eigenvalue distribution function of an ellitic operator on a compact manifold, Comm. Partial Differential Equations 15 (1990), 1509-1563 Zbl0724.35081MR1079602

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.