A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II

Werner Nowak

Open Mathematics (2009)

  • Volume: 7, Issue: 3, page 452-462
  • ISSN: 2391-5455

Abstract

top
This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2ℓ + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd ℓ, it continues the work done in part I [21] which dealt with even ℓ.

How to cite

top

Werner Nowak. "A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II." Open Mathematics 7.3 (2009): 452-462. <http://eudml.org/doc/269041>.

@article{WernerNowak2009,
abstract = {This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2ℓ + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd ℓ, it continues the work done in part I [21] which dealt with even ℓ.},
author = {Werner Nowak},
journal = {Open Mathematics},
keywords = {Heisenberg manifolds; Weyl’s law; Spectral theory; Omega estimates; Weyl's law; spectral theory; omega estimates},
language = {eng},
number = {3},
pages = {452-462},
title = {A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II},
url = {http://eudml.org/doc/269041},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Werner Nowak
TI - A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II
JO - Open Mathematics
PY - 2009
VL - 7
IS - 3
SP - 452
EP - 462
AB - This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2ℓ + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd ℓ, it continues the work done in part I [21] which dealt with even ℓ.
LA - eng
KW - Heisenberg manifolds; Weyl’s law; Spectral theory; Omega estimates; Weyl's law; spectral theory; omega estimates
UR - http://eudml.org/doc/269041
ER -

References

top
  1. [1] Besicovitch A.S., On the linear independence of fractional powers of integers, J. London Math. Soc., 1940, 15, 3–6 http://dx.doi.org/10.1112/jlms/s1-15.1.3 Zbl0026.20301
  2. [2] Chung D., Petridis Y.N., Toth J.A., The remainder in Weyl’s law for Heisenberg manifolds II, In: Heath-Brown D.R. et al (Eds.), Proceedings of the session in analytic number theory and Diophantine equations ( January–June 2002, Bonn, Germany) Bonner Mathematische Schriften, 2003, 360 Zbl1175.58008
  3. [3] Corrádi K., Kátai I., A comment on K.S. Gangadharan’s paper “Two classical lattice point problems”, Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Kozl., 1967, 17, 89–97 (in Hungarian) 
  4. [4] Cramér H., Über zwei Sätze von Herrn G.H. Hardy, Math. Z., 1922, 15, 201–210 http://dx.doi.org/10.1007/BF01494394 
  5. [5] Drmota M., Tichy R.F., Sequences, discrepancies, and applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997 
  6. [6] Gangadharan K.S., Two classical lattice point problems, Math. Proc. Cambridge Philos. Soc., 1961, 57, 699–721 http://dx.doi.org/10.1017/S0305004100035830 Zbl0100.03901
  7. [7] Gordon C.S., Wilson E.N., The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J., 1986, 33, 253–271 http://dx.doi.org/10.1307/mmj/1029003354 Zbl0599.53038
  8. [8] Graham S.W., Kolesnik G., Van der Corput’s method of exponential sums, Cambridge University Press, 1991 Zbl0713.11001
  9. [9] Hafner J.L., New omega results for two classical lattice point problems, Invent. Math., 1981, 63, 181–186 http://dx.doi.org/10.1007/BF01393875 Zbl0458.10031
  10. [10] Hardy G.H., On the expression of a number as the sum of two squares, Quart. J. Math., 1915, 46, 263–283 Zbl45.1253.01
  11. [11] Hörmander L., The spectral function of an elliptic operator, Acta Math., 1968, 121, 193–218 http://dx.doi.org/10.1007/BF02391913 Zbl0164.13201
  12. [12] Huxley M.N., Area, lattice points, and exponential sums, LMS Monographs, New Ser., Oxford, 1996 Zbl0861.11002
  13. [13] Huxley M.N., Exponential sums and lattice points III, Proc. London Math. Soc., 2003, 87, 591–609 http://dx.doi.org/10.1112/S0024611503014485 Zbl1065.11079
  14. [14] Ivic A., Krätzel E., Kühleitner M., Nowak W.G., Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic, In: Schwarz W., Steuding J. (Eds.), Proceedings Conference on Elementary and Analytic Number Theory ELAZ’04 (24–28 May 2006, Mainz, Germany), Franz Steiner Verlag, 2006, 89–128 Zbl1177.11084
  15. [15] Iwaniec H., Kowalski E., Analytic number theory, AMS Coll. Publ. 53, Providence, R.I., 2004 Zbl1059.11001
  16. [16] Khosravi M., Spectral statistics for Heisenberg manifolds, Ph.D. thesis, McGill University, Montreal, Canada, 2005 
  17. [17] Khosravi M., Petridis Y.N., The remainder in Weyl’s law for n-dimensional Heisenberg manifolds, Proc. Amer. Math. Soc., 2005, 133, 3561–3571 http://dx.doi.org/10.1090/S0002-9939-05-08155-4 Zbl1080.35054
  18. [18] Khosravi M., Toth J.A., Cramer’s formula for Heisenberg manifolds, Ann. Inst. Fourier, 2005, 55, 2489–2520 Zbl1090.58018
  19. [19] Krätzel E., Lattice points, Berlin, Kluwer, 1988 Zbl0675.10031
  20. [20] Krätzel E., Analytische Funktionen in der Zahlentheorie, Stuttgart-Leipzig-Wiesbaden, Teubner, 2000 (in German) 
  21. [21] Nowak W.G., A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, Arch. Math. (Basel), preprint available at http://arxiv.org/PS_cache/arxiv/pdf/0809/0809.3924v1.pdf Zbl1184.11039
  22. [22] Petridis Y.N., Toth J.A., The remainder in Weyl’s law for Heisenberg manifolds, J. Differential Geom., 2002, 60, 455–483 Zbl1066.58017
  23. [23] Soundararajan K., Omega results for the divisor and circle problems, Int. Math. Res. Not., 2003, 36, 1987–1998 http://dx.doi.org/10.1155/S1073792803130309 Zbl1130.11329
  24. [24] Vaaler J.D., Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc., 1985, 12, 183–216 http://dx.doi.org/10.1090/S0273-0979-1985-15349-2 Zbl0575.42003
  25. [25] Zhai W., On the error term in Weyl’s law for the Heisenberg manifolds, Acta Arith., 2008, 134, 219–257 http://dx.doi.org/10.4064/aa134-3-3 Zbl1229.11127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.