A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II
Open Mathematics (2009)
- Volume: 7, Issue: 3, page 452-462
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topWerner Nowak. "A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II." Open Mathematics 7.3 (2009): 452-462. <http://eudml.org/doc/269041>.
@article{WernerNowak2009,
abstract = {This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2ℓ + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd ℓ, it continues the work done in part I [21] which dealt with even ℓ.},
author = {Werner Nowak},
journal = {Open Mathematics},
keywords = {Heisenberg manifolds; Weyl’s law; Spectral theory; Omega estimates; Weyl's law; spectral theory; omega estimates},
language = {eng},
number = {3},
pages = {452-462},
title = {A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II},
url = {http://eudml.org/doc/269041},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Werner Nowak
TI - A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II
JO - Open Mathematics
PY - 2009
VL - 7
IS - 3
SP - 452
EP - 462
AB - This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2ℓ + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd ℓ, it continues the work done in part I [21] which dealt with even ℓ.
LA - eng
KW - Heisenberg manifolds; Weyl’s law; Spectral theory; Omega estimates; Weyl's law; spectral theory; omega estimates
UR - http://eudml.org/doc/269041
ER -
References
top- [1] Besicovitch A.S., On the linear independence of fractional powers of integers, J. London Math. Soc., 1940, 15, 3–6 http://dx.doi.org/10.1112/jlms/s1-15.1.3 Zbl0026.20301
- [2] Chung D., Petridis Y.N., Toth J.A., The remainder in Weyl’s law for Heisenberg manifolds II, In: Heath-Brown D.R. et al (Eds.), Proceedings of the session in analytic number theory and Diophantine equations ( January–June 2002, Bonn, Germany) Bonner Mathematische Schriften, 2003, 360 Zbl1175.58008
- [3] Corrádi K., Kátai I., A comment on K.S. Gangadharan’s paper “Two classical lattice point problems”, Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Kozl., 1967, 17, 89–97 (in Hungarian)
- [4] Cramér H., Über zwei Sätze von Herrn G.H. Hardy, Math. Z., 1922, 15, 201–210 http://dx.doi.org/10.1007/BF01494394
- [5] Drmota M., Tichy R.F., Sequences, discrepancies, and applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997
- [6] Gangadharan K.S., Two classical lattice point problems, Math. Proc. Cambridge Philos. Soc., 1961, 57, 699–721 http://dx.doi.org/10.1017/S0305004100035830 Zbl0100.03901
- [7] Gordon C.S., Wilson E.N., The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J., 1986, 33, 253–271 http://dx.doi.org/10.1307/mmj/1029003354 Zbl0599.53038
- [8] Graham S.W., Kolesnik G., Van der Corput’s method of exponential sums, Cambridge University Press, 1991 Zbl0713.11001
- [9] Hafner J.L., New omega results for two classical lattice point problems, Invent. Math., 1981, 63, 181–186 http://dx.doi.org/10.1007/BF01393875 Zbl0458.10031
- [10] Hardy G.H., On the expression of a number as the sum of two squares, Quart. J. Math., 1915, 46, 263–283 Zbl45.1253.01
- [11] Hörmander L., The spectral function of an elliptic operator, Acta Math., 1968, 121, 193–218 http://dx.doi.org/10.1007/BF02391913 Zbl0164.13201
- [12] Huxley M.N., Area, lattice points, and exponential sums, LMS Monographs, New Ser., Oxford, 1996 Zbl0861.11002
- [13] Huxley M.N., Exponential sums and lattice points III, Proc. London Math. Soc., 2003, 87, 591–609 http://dx.doi.org/10.1112/S0024611503014485 Zbl1065.11079
- [14] Ivic A., Krätzel E., Kühleitner M., Nowak W.G., Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic, In: Schwarz W., Steuding J. (Eds.), Proceedings Conference on Elementary and Analytic Number Theory ELAZ’04 (24–28 May 2006, Mainz, Germany), Franz Steiner Verlag, 2006, 89–128 Zbl1177.11084
- [15] Iwaniec H., Kowalski E., Analytic number theory, AMS Coll. Publ. 53, Providence, R.I., 2004 Zbl1059.11001
- [16] Khosravi M., Spectral statistics for Heisenberg manifolds, Ph.D. thesis, McGill University, Montreal, Canada, 2005
- [17] Khosravi M., Petridis Y.N., The remainder in Weyl’s law for n-dimensional Heisenberg manifolds, Proc. Amer. Math. Soc., 2005, 133, 3561–3571 http://dx.doi.org/10.1090/S0002-9939-05-08155-4 Zbl1080.35054
- [18] Khosravi M., Toth J.A., Cramer’s formula for Heisenberg manifolds, Ann. Inst. Fourier, 2005, 55, 2489–2520 Zbl1090.58018
- [19] Krätzel E., Lattice points, Berlin, Kluwer, 1988 Zbl0675.10031
- [20] Krätzel E., Analytische Funktionen in der Zahlentheorie, Stuttgart-Leipzig-Wiesbaden, Teubner, 2000 (in German)
- [21] Nowak W.G., A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, Arch. Math. (Basel), preprint available at http://arxiv.org/PS_cache/arxiv/pdf/0809/0809.3924v1.pdf Zbl1184.11039
- [22] Petridis Y.N., Toth J.A., The remainder in Weyl’s law for Heisenberg manifolds, J. Differential Geom., 2002, 60, 455–483 Zbl1066.58017
- [23] Soundararajan K., Omega results for the divisor and circle problems, Int. Math. Res. Not., 2003, 36, 1987–1998 http://dx.doi.org/10.1155/S1073792803130309 Zbl1130.11329
- [24] Vaaler J.D., Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc., 1985, 12, 183–216 http://dx.doi.org/10.1090/S0273-0979-1985-15349-2 Zbl0575.42003
- [25] Zhai W., On the error term in Weyl’s law for the Heisenberg manifolds, Acta Arith., 2008, 134, 219–257 http://dx.doi.org/10.4064/aa134-3-3 Zbl1229.11127
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.