The Chern character for Lie-Rinehart algebras

Helge Maakestad[1]

  • [1] Université Paris VII, Institut de Mathématiques, case 247, 4 place Jussieu, 75252 Paris Cedex (France)

Annales de l'institut Fourier (2005)

  • Volume: 55, Issue: 7, page 2551-2574
  • ISSN: 0373-0956

Abstract

top
Let A be a commutative S -algebra where S is a ring containing the rationals. We prove the existence of a Chern character for Lie-Rinehart algebras L over A with values in the Lie-Rinehart cohomology of L which is independent of choice of a L -connection. Our result generalizes the classical Chern character from the K -theory of A to the algebraic De Rham cohomology.

How to cite

top

Maakestad, Helge. "The Chern character for Lie-Rinehart algebras." Annales de l'institut Fourier 55.7 (2005): 2551-2574. <http://eudml.org/doc/116263>.

@article{Maakestad2005,
abstract = {Let $A$ be a commutative $S$-algebra where $S$ is a ring containing the rationals. We prove the existence of a Chern character for Lie-Rinehart algebras $L$ over A with values in the Lie-Rinehart cohomology of L which is independent of choice of a $L$-connection. Our result generalizes the classical Chern character from the $K$-theory of $A$ to the algebraic De Rham cohomology.},
affiliation = {Université Paris VII, Institut de Mathématiques, case 247, 4 place Jussieu, 75252 Paris Cedex (France)},
author = {Maakestad, Helge},
journal = {Annales de l'institut Fourier},
keywords = {Lie-Rinehart algebra; connection; de Rham cohomology; Lie-Rinehart cohomology; Jacobsons Galois correspondence},
language = {eng},
number = {7},
pages = {2551-2574},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Chern character for Lie-Rinehart algebras},
url = {http://eudml.org/doc/116263},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Maakestad, Helge
TI - The Chern character for Lie-Rinehart algebras
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2551
EP - 2574
AB - Let $A$ be a commutative $S$-algebra where $S$ is a ring containing the rationals. We prove the existence of a Chern character for Lie-Rinehart algebras $L$ over A with values in the Lie-Rinehart cohomology of L which is independent of choice of a $L$-connection. Our result generalizes the classical Chern character from the $K$-theory of $A$ to the algebraic De Rham cohomology.
LA - eng
KW - Lie-Rinehart algebra; connection; de Rham cohomology; Lie-Rinehart cohomology; Jacobsons Galois correspondence
UR - http://eudml.org/doc/116263
ER -

References

top
  1. L. Breen, Tannakian categories, Motives 55 (1994) Zbl0810.18008MR1265536
  2. A. Grothendieck, Crystals and the deRham cohomology of schemes, (1968), 306-358, North-Holland Zbl0215.37102MR269663
  3. A. Grothendieck, Motifs, (1965-70) 
  4. J. Huebschmann, Extensions of Lie-Rinehart algebras and the Chern-Weil construction, Cont. Maths. 227 (1999) Zbl0946.17008MR1665465
  5. J. Huebschmann, Poisson cohomology and quantization, J. für die reine und angewandte Mathematik 408 (1990) Zbl0699.53037MR1058984
  6. N. Jacobson, Abstract derivations and Lie algebras, Trans. Amer. Math. Soc. 42 (1937) Zbl0017.29203MR1501922
  7. T. Kohno, An algebraic computation of the Alexander-polynomial of a plane algebraic curve, Proc. Japan. Acad. Ser. A Math. Sci 59 (1983) Zbl0524.14028MR711305
  8. J. Kubarski, Tangential Chern-Weil homomorphism, Geometric study of foliations, World. Sci. Publishing (1994) MR1363733
  9. G. Laumon, Champs algebriques, (2000), Springer-Verlag Zbl0945.14005
  10. J. L. Loday, Cyclic homology, 301 (1998), Springer Verlag Zbl0885.18007MR1600246
  11. J. S. Milne, Motives over finite fields, Motives 55 (1994) Zbl0811.14018MR1265538
  12. G. Rinehart, Differential forms for general commutative algebras, Trans. Amer. Math. Soc. 108 (1963) Zbl0113.26204
  13. C. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press Zbl0797.18001MR1269324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.