The Chern character for Lie-Rinehart algebras
- [1] Université Paris VII, Institut de Mathématiques, case 247, 4 place Jussieu, 75252 Paris Cedex (France)
Annales de l'institut Fourier (2005)
- Volume: 55, Issue: 7, page 2551-2574
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMaakestad, Helge. "The Chern character for Lie-Rinehart algebras." Annales de l'institut Fourier 55.7 (2005): 2551-2574. <http://eudml.org/doc/116263>.
@article{Maakestad2005,
abstract = {Let $A$ be a commutative $S$-algebra where $S$ is a ring containing the rationals. We prove the existence of a Chern character for Lie-Rinehart algebras $L$ over A with values in the Lie-Rinehart cohomology of L which is independent of choice of a $L$-connection. Our result generalizes the classical Chern character from the $K$-theory of $A$ to the algebraic De Rham cohomology.},
affiliation = {Université Paris VII, Institut de Mathématiques, case 247, 4 place Jussieu, 75252 Paris Cedex (France)},
author = {Maakestad, Helge},
journal = {Annales de l'institut Fourier},
keywords = {Lie-Rinehart algebra; connection; de Rham cohomology; Lie-Rinehart cohomology; Jacobsons Galois correspondence},
language = {eng},
number = {7},
pages = {2551-2574},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Chern character for Lie-Rinehart algebras},
url = {http://eudml.org/doc/116263},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Maakestad, Helge
TI - The Chern character for Lie-Rinehart algebras
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 7
SP - 2551
EP - 2574
AB - Let $A$ be a commutative $S$-algebra where $S$ is a ring containing the rationals. We prove the existence of a Chern character for Lie-Rinehart algebras $L$ over A with values in the Lie-Rinehart cohomology of L which is independent of choice of a $L$-connection. Our result generalizes the classical Chern character from the $K$-theory of $A$ to the algebraic De Rham cohomology.
LA - eng
KW - Lie-Rinehart algebra; connection; de Rham cohomology; Lie-Rinehart cohomology; Jacobsons Galois correspondence
UR - http://eudml.org/doc/116263
ER -
References
top- L. Breen, Tannakian categories, Motives 55 (1994) Zbl0810.18008MR1265536
- A. Grothendieck, Crystals and the deRham cohomology of schemes, (1968), 306-358, North-Holland Zbl0215.37102MR269663
- A. Grothendieck, Motifs, (1965-70)
- J. Huebschmann, Extensions of Lie-Rinehart algebras and the Chern-Weil construction, Cont. Maths. 227 (1999) Zbl0946.17008MR1665465
- J. Huebschmann, Poisson cohomology and quantization, J. für die reine und angewandte Mathematik 408 (1990) Zbl0699.53037MR1058984
- N. Jacobson, Abstract derivations and Lie algebras, Trans. Amer. Math. Soc. 42 (1937) Zbl0017.29203MR1501922
- T. Kohno, An algebraic computation of the Alexander-polynomial of a plane algebraic curve, Proc. Japan. Acad. Ser. A Math. Sci 59 (1983) Zbl0524.14028MR711305
- J. Kubarski, Tangential Chern-Weil homomorphism, Geometric study of foliations, World. Sci. Publishing (1994) MR1363733
- G. Laumon, Champs algebriques, (2000), Springer-Verlag Zbl0945.14005
- J. L. Loday, Cyclic homology, 301 (1998), Springer Verlag Zbl0885.18007MR1600246
- J. S. Milne, Motives over finite fields, Motives 55 (1994) Zbl0811.14018MR1265538
- G. Rinehart, Differential forms for general commutative algebras, Trans. Amer. Math. Soc. 108 (1963) Zbl0113.26204
- C. Weibel, An introduction to homological algebra, 38 (1994), Cambridge University Press Zbl0797.18001MR1269324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.