Representation theory for log-canonical surface singularities

Trond Stølen Gustavsen[1]; Runar Ile[2]

  • [1] Buskerud University College Department of Teacher Education Pb. 7053 3007 Drammen (Norvège)
  • [2] University of Bergen Department of Mathematics Johs. Brunsgt. 12 5008 Bergen (Norvège)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 2, page 389-416
  • ISSN: 0373-0956

Abstract

top
We consider the representation theory for a class of log-canonical surface singularities in the sense of reflexive (or equivalently maximal Cohen-Macaulay) modules and in the sense of finite dimensional representations of the local fundamental group. A detailed classification and enumeration of the indecomposable reflexive modules is given, and we prove that any reflexive module admits an integrable connection and hence is induced from a finite dimensional representation of the local fundamental group.

How to cite

top

Gustavsen, Trond Stølen, and Ile, Runar. "Representation theory for log-canonical surface singularities." Annales de l’institut Fourier 60.2 (2010): 389-416. <http://eudml.org/doc/116275>.

@article{Gustavsen2010,
abstract = {We consider the representation theory for a class of log-canonical surface singularities in the sense of reflexive (or equivalently maximal Cohen-Macaulay) modules and in the sense of finite dimensional representations of the local fundamental group. A detailed classification and enumeration of the indecomposable reflexive modules is given, and we prove that any reflexive module admits an integrable connection and hence is induced from a finite dimensional representation of the local fundamental group.},
affiliation = {Buskerud University College Department of Teacher Education Pb. 7053 3007 Drammen (Norvège); University of Bergen Department of Mathematics Johs. Brunsgt. 12 5008 Bergen (Norvège)},
author = {Gustavsen, Trond Stølen, Ile, Runar},
journal = {Annales de l’institut Fourier},
keywords = {Surface singularity; maximal Cohen-Macaulay module; integrable connection; elliptic curve; local fundamental group},
language = {eng},
number = {2},
pages = {389-416},
publisher = {Association des Annales de l’institut Fourier},
title = {Representation theory for log-canonical surface singularities},
url = {http://eudml.org/doc/116275},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Gustavsen, Trond Stølen
AU - Ile, Runar
TI - Representation theory for log-canonical surface singularities
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 389
EP - 416
AB - We consider the representation theory for a class of log-canonical surface singularities in the sense of reflexive (or equivalently maximal Cohen-Macaulay) modules and in the sense of finite dimensional representations of the local fundamental group. A detailed classification and enumeration of the indecomposable reflexive modules is given, and we prove that any reflexive module admits an integrable connection and hence is induced from a finite dimensional representation of the local fundamental group.
LA - eng
KW - Surface singularity; maximal Cohen-Macaulay module; integrable connection; elliptic curve; local fundamental group
UR - http://eudml.org/doc/116275
ER -

References

top
  1. M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452 Zbl0084.17305MR131423
  2. Maurice Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), 511-531 Zbl0594.20030MR816307
  3. Kurt Behnke, On Auslander modules of normal surface singularities, Manuscripta Math. 66 (1989), 205-223 Zbl0708.14023MR1027308
  4. I. N. Bernšteĭn, I. M. Gelfand, S. I. Gelfand, Differential operators on a cubic cone, Uspehi Mat. Nauk 27 (1972), 185-190 Zbl0253.58009MR385159
  5. Yuriy A. Drozd, Gert-Martin Greuel, Irina Kashuba, On Cohen-Macaulay modules on surface singularities, Mosc. Math. J. 3 (2003), 397-418, 742 Zbl1051.13006MR2025266
  6. Hélène Esnault, Reflexive modules on quotient surface singularities, J. Reine Angew. Math. 362 (1985), 63-71 Zbl0553.14016MR809966
  7. H. Grauert, Th. Peternell, R. Remmert, R.V. Gamkrelidze, Several complex variables VII. Sheaf-theoretical methods in complex analysis, 74 (1994), Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin Zbl0793.00010MR1326617
  8. Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368 Zbl0173.33004MR137127
  9. Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119-221 Zbl0118.26104MR102537
  10. Trond Stølen Gustavsen, Runar Ile, Reflexive modules on normal surface singularities and representations of the local fundamental group., J. Pure Appl. Algebra 212 (2008), 851-862 Zbl1130.32014MR2363497
  11. Jürgen Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln, Math. Ann. 233 (1978), 21-34 Zbl0358.13009MR463155
  12. Constantin P. M. Kahn, Reflexive Moduln auf einfach-elliptischen Flächensingularitäten, (1988), Universität Bonn Mathematisches Institut, Bonn Zbl0674.14025MR930666
  13. Constantin P. M. Kahn, Reflexive modules on minimally elliptic singularities, Math. Ann. 285 (1989), 141-160 Zbl0662.14022MR1010197
  14. Yujiro Kawamata, Crepant blowing-up of 3 -dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2) 127 (1988), 93-163 Zbl0651.14005MR924674
  15. Henry B. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295 Zbl0384.32003MR568898
  16. D. Lehmann, Connexions à courbure nulle et K -théorie, An. Acad. Brasil. Ci. 40 (1968), 1-6 Zbl0176.52803MR239618
  17. Helmut Lenzing, Hagen Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, Representations of algebras (Ottawa, ON, 1992) 14 (1993), 313-337, Amer. Math. Soc., Providence, RI Zbl0809.16012MR1206953
  18. Thierry Levasseur, Opérateurs différentiels sur les surfaces munies d’une bonne C * -action, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39e Année (Paris, 1987/1988) 1404 (1989), 269-295, Springer, Berlin Zbl0715.16009MR1035229
  19. Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969), 195-279 Zbl0181.48903MR276239
  20. Kenji Matsuki, Introduction to the Mori program, (2002), Springer-Verlag, New York Zbl0988.14007MR1875410
  21. David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. (1961), 5-22 Zbl0108.16801MR153682
  22. H. Pinkham, Normal surface singularities with C * action, Math. Ann. 227 (1977), 183-193 Zbl0338.14010MR432636
  23. David Ploog, Equivariant autoequivalences for finite group actions, Adv. Math. 216 (2007), 62-74 Zbl1167.14031MR2353249
  24. A. Polishchuk, Holomorphic bundles on 2-dimensional noncommutative toric orbifolds, Noncommutative geometry and number theory (2006), 341-359, Vieweg, Wiesbaden Zbl1103.14002MR2327312
  25. Kyoji Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289-325 Zbl0296.14019MR354669
  26. Michael Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971), 17-26 Zbl0232.14005MR292830
  27. Philip Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology 11 (1971), 51-72 Zbl0204.56404MR285536
  28. Jonathan M. Wahl, Equations defining rational singularities, Ann. Sci. École Norm. Sup. (4) 10 (1977), 231-263 Zbl0367.14004MR444655

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.