Representation theory for log-canonical surface singularities
Trond Stølen Gustavsen[1]; Runar Ile[2]
- [1] Buskerud University College Department of Teacher Education Pb. 7053 3007 Drammen (Norvège)
- [2] University of Bergen Department of Mathematics Johs. Brunsgt. 12 5008 Bergen (Norvège)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 2, page 389-416
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGustavsen, Trond Stølen, and Ile, Runar. "Representation theory for log-canonical surface singularities." Annales de l’institut Fourier 60.2 (2010): 389-416. <http://eudml.org/doc/116275>.
@article{Gustavsen2010,
abstract = {We consider the representation theory for a class of log-canonical surface singularities in the sense of reflexive (or equivalently maximal Cohen-Macaulay) modules and in the sense of finite dimensional representations of the local fundamental group. A detailed classification and enumeration of the indecomposable reflexive modules is given, and we prove that any reflexive module admits an integrable connection and hence is induced from a finite dimensional representation of the local fundamental group.},
affiliation = {Buskerud University College Department of Teacher Education Pb. 7053 3007 Drammen (Norvège); University of Bergen Department of Mathematics Johs. Brunsgt. 12 5008 Bergen (Norvège)},
author = {Gustavsen, Trond Stølen, Ile, Runar},
journal = {Annales de l’institut Fourier},
keywords = {Surface singularity; maximal Cohen-Macaulay module; integrable connection; elliptic curve; local fundamental group},
language = {eng},
number = {2},
pages = {389-416},
publisher = {Association des Annales de l’institut Fourier},
title = {Representation theory for log-canonical surface singularities},
url = {http://eudml.org/doc/116275},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Gustavsen, Trond Stølen
AU - Ile, Runar
TI - Representation theory for log-canonical surface singularities
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 389
EP - 416
AB - We consider the representation theory for a class of log-canonical surface singularities in the sense of reflexive (or equivalently maximal Cohen-Macaulay) modules and in the sense of finite dimensional representations of the local fundamental group. A detailed classification and enumeration of the indecomposable reflexive modules is given, and we prove that any reflexive module admits an integrable connection and hence is induced from a finite dimensional representation of the local fundamental group.
LA - eng
KW - Surface singularity; maximal Cohen-Macaulay module; integrable connection; elliptic curve; local fundamental group
UR - http://eudml.org/doc/116275
ER -
References
top- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452 Zbl0084.17305MR131423
- Maurice Auslander, Rational singularities and almost split sequences, Trans. Amer. Math. Soc. 293 (1986), 511-531 Zbl0594.20030MR816307
- Kurt Behnke, On Auslander modules of normal surface singularities, Manuscripta Math. 66 (1989), 205-223 Zbl0708.14023MR1027308
- I. N. Bernšteĭn, I. M. Gelfand, S. I. Gelfand, Differential operators on a cubic cone, Uspehi Mat. Nauk 27 (1972), 185-190 Zbl0253.58009MR385159
- Yuriy A. Drozd, Gert-Martin Greuel, Irina Kashuba, On Cohen-Macaulay modules on surface singularities, Mosc. Math. J. 3 (2003), 397-418, 742 Zbl1051.13006MR2025266
- Hélène Esnault, Reflexive modules on quotient surface singularities, J. Reine Angew. Math. 362 (1985), 63-71 Zbl0553.14016MR809966
- H. Grauert, Th. Peternell, R. Remmert, R.V. Gamkrelidze, Several complex variables VII. Sheaf-theoretical methods in complex analysis, 74 (1994), Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin Zbl0793.00010MR1326617
- Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368 Zbl0173.33004MR137127
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119-221 Zbl0118.26104MR102537
- Trond Stølen Gustavsen, Runar Ile, Reflexive modules on normal surface singularities and representations of the local fundamental group., J. Pure Appl. Algebra 212 (2008), 851-862 Zbl1130.32014MR2363497
- Jürgen Herzog, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln, Math. Ann. 233 (1978), 21-34 Zbl0358.13009MR463155
- Constantin P. M. Kahn, Reflexive Moduln auf einfach-elliptischen Flächensingularitäten, (1988), Universität Bonn Mathematisches Institut, Bonn Zbl0674.14025MR930666
- Constantin P. M. Kahn, Reflexive modules on minimally elliptic singularities, Math. Ann. 285 (1989), 141-160 Zbl0662.14022MR1010197
- Yujiro Kawamata, Crepant blowing-up of -dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2) 127 (1988), 93-163 Zbl0651.14005MR924674
- Henry B. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295 Zbl0384.32003MR568898
- D. Lehmann, Connexions à courbure nulle et -théorie, An. Acad. Brasil. Ci. 40 (1968), 1-6 Zbl0176.52803MR239618
- Helmut Lenzing, Hagen Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, Representations of algebras (Ottawa, ON, 1992) 14 (1993), 313-337, Amer. Math. Soc., Providence, RI Zbl0809.16012MR1206953
- Thierry Levasseur, Opérateurs différentiels sur les surfaces munies d’une bonne -action, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39e Année (Paris, 1987/1988) 1404 (1989), 269-295, Springer, Berlin Zbl0715.16009MR1035229
- Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969), 195-279 Zbl0181.48903MR276239
- Kenji Matsuki, Introduction to the Mori program, (2002), Springer-Verlag, New York Zbl0988.14007MR1875410
- David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. (1961), 5-22 Zbl0108.16801MR153682
- H. Pinkham, Normal surface singularities with action, Math. Ann. 227 (1977), 183-193 Zbl0338.14010MR432636
- David Ploog, Equivariant autoequivalences for finite group actions, Adv. Math. 216 (2007), 62-74 Zbl1167.14031MR2353249
- A. Polishchuk, Holomorphic bundles on 2-dimensional noncommutative toric orbifolds, Noncommutative geometry and number theory (2006), 341-359, Vieweg, Wiesbaden Zbl1103.14002MR2327312
- Kyoji Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289-325 Zbl0296.14019MR354669
- Michael Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971), 17-26 Zbl0232.14005MR292830
- Philip Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology 11 (1971), 51-72 Zbl0204.56404MR285536
- Jonathan M. Wahl, Equations defining rational singularities, Ann. Sci. École Norm. Sup. (4) 10 (1977), 231-263 Zbl0367.14004MR444655
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.