Displaying similar documents to “Representation theory for log-canonical surface singularities”

On bounded generalized Harish-Chandra modules

Ivan Penkov, Vera Serganova (2012)

Annales de l’institut Fourier

Similarity:

Let 𝔤 be a complex reductive Lie algebra and 𝔨 𝔤 be any reductive in 𝔤 subalgebra. We call a ( 𝔤 , 𝔨 ) -module M bounded if the 𝔨 -multiplicities of M are uniformly bounded. In this paper we initiate a general study of simple bounded ( 𝔤 , 𝔨 ) -modules. We prove a strong necessary condition for a subalgebra 𝔨 to be bounded (Corollary 4.6), to admit an infinite-dimensional simple bounded ( 𝔤 , 𝔨 ) -module, and then establish a sufficient condition for a subalgebra 𝔨 to be bounded (Theorem 5.1). As a result we are...

The Drinfeld Modular Jacobian J 1 ( n ) has connected fibers

Sreekar M. Shastry (2007)

Annales de l’institut Fourier

Similarity:

We study the integral model of the Drinfeld modular curve X 1 ( n ) for a prime n 𝔽 q [ T ] . A function field analogue of the theory of Igusa curves is introduced to describe its reduction mod n . A result describing the universal deformation ring of a pair consisting of a supersingular Drinfeld module and a point of order n in terms of the Hasse invariant of that Drinfeld module is proved. We then apply Jung-Hirzebruch resolution for arithmetic surfaces to produce a regular model of X 1 ( n ) which, after contractions...