Foliations with Degenerate Gauss maps on
- [1] Universidade Federal do Espírito Santo Departamento de Matemática – CCE Av. Fernando Ferrari 514 – Vitória 29075-910 ES (Brasil)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 2, page 455-487
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFassarella, Thiago. "Foliations with Degenerate Gauss maps on $\mathbb{P}^4$." Annales de l’institut Fourier 60.2 (2010): 455-487. <http://eudml.org/doc/116278>.
@article{Fassarella2010,
abstract = {We obtain a classification of codimension one holomorphic foliations on $\mathbb\{P\}^4$ with degenerate Gauss maps.},
affiliation = {Universidade Federal do Espírito Santo Departamento de Matemática – CCE Av. Fernando Ferrari 514 – Vitória 29075-910 ES (Brasil)},
author = {Fassarella, Thiago},
journal = {Annales de l’institut Fourier},
keywords = {Gauss Map; Degenerate; Holomorphic Foliations; Gauss map; degenerate; holomorphic foliations},
language = {eng},
number = {2},
pages = {455-487},
publisher = {Association des Annales de l’institut Fourier},
title = {Foliations with Degenerate Gauss maps on $\mathbb\{P\}^4$},
url = {http://eudml.org/doc/116278},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Fassarella, Thiago
TI - Foliations with Degenerate Gauss maps on $\mathbb{P}^4$
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 455
EP - 487
AB - We obtain a classification of codimension one holomorphic foliations on $\mathbb{P}^4$ with degenerate Gauss maps.
LA - eng
KW - Gauss Map; Degenerate; Holomorphic Foliations; Gauss map; degenerate; holomorphic foliations
UR - http://eudml.org/doc/116278
ER -
References
top- B. Adlandsvik, Joins and Higher secant varieties, Math. Scand. 61 (1987), 213-222 Zbl0657.14034MR947474
- M.A. Akivis, V.V. Gol’dberg, Differential geometry of varieties with degenerate Gauss maps, (2004), Springer MR2014407
- Marco Brunella, Birational geometry of foliations, (2000), Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro Zbl1073.14022MR1948251
- D. Cerveau, A. Lins Neto, Irreducible Components of the Space of Holomorphic Foliations of Degree Two in CP(n), n 3, The Annals of Mathematics 143 (1996), 577-612 Zbl0855.32015MR1394970
- D. Cerveau, A.L. Neto, F. Loray, J.V. Pereira, F. Touzet, Algebraic Reduction Theorem for complex codimension one singular foliations, Comment. Math. Helv. 81 (2006), 157-169 Zbl1095.37019MR2208802
- Dominique Cerveau, Feuilletages en droites, équations des eikonales et aures équations différentielles, (2005) MR1760842
- M. Dale, Terracini’s lemma and the secant variety of a curve, Proc. London Math. Soc. 3 (1984), 329-339 Zbl0571.14025MR748993
- P. De Poi, On first order congruences of lines of with a fundamental curve, manuscripta mathematica 106 (2001), 101-116 Zbl1066.14062MR1860982
- P. De Poi, Congruences of lines with one-dimensional focal locus, Portugaliae Mathematica 61 (2004), 329-338 Zbl1067.14049MR2098024
- P. De Poi, On first order congruences of lines in with irreducible fundamental surface, Mathematische Nachrichten 278 (2005), 363-378 Zbl1070.14045MR2121565
- P. De Poi, On First Order Congruences of Lines in with Generically Non-reduced Fundamental Surface, Asian Journal of Mathematics 12 (2008), 56-64 Zbl1147.14025MR2415011
- T. Fassarella, J.V. Pereira, On the degree of polar transformations. An approach through logarithmic foliations, Selecta Mathematica, New Series 13 (2007), 239-252 Zbl1193.37065MR2361094
- G. Fischer, J. Piontkowski, Ruled varieties: an introduction to algebraic differential geometry, (2001), Vieweg Verlag Zbl0976.14025MR1876644
- P. Griffiths, J. Harris, Algebraic geometry and local differential geometry, Ann. Sci. Ecole Norm. Sup.(4) 12 (1979), 355-452 Zbl0426.14019MR559347
- T.A. Ivey, J.M. Landsberg, Cartan for beginners: differential geometry via moving frames and exterior differential systems, (2003), American Mathematical Society Zbl1105.53001MR2003610
- JP Jouanolou, Equations de Pfaff algebriques, in Lectures Notes in Mathematics, 708, (1979), Springer-Verlag, New York/Berlin Zbl0477.58002MR537038
- EE Kummer, Über die algebraischen Strahlensysteme, insbesondere über die der ersten und zweiten Ordnung, Abh. K. Preuss. Akad. Wiss. Berlin (1866), 1-120
- G. Marletta, Sopra i complessi d ordine uno dell , Atti Accad, Gioenia, Serie V, Catania 3 (1909), 1-15 Zbl0020.39301
- G. Marletta, Sui complessi di rette del primo ordine dello spazio a quattro dimensioni, Rend. Circ. Mat. Palermo 28 (1909), 353-399 Zbl40.0723.01
- E. Mezzetti, D. Portelli, A tour through some classical theorems on algebraic surfaces, An. Stiint. Univ. Ovidius Constanta Ser. Mat 5 (1997), 51-78 Zbl0971.14032MR1614780
- E. Mezzetti, O. Tommasi, On projective varieties of dimension covered by -spaces, Illinois J.Math. 46 (2002), 443-465 Zbl1052.14065MR1936928
- JV Pereira, S. Yuzvinsky, Completely reducible hypersurfaces in a pencil, Advances in Mathematics 219 (2008), 672-688 Zbl1146.14005MR2435653
- Z. Ran, Surfaces of order 1 in Grassmannians, J. reine angew. Math 368 (1986), 119-126 Zbl0601.14042MR850617
- E. Rogora, Classification of Bertini’s series of varieties of dimension less than or equal to four, Geometriae Dedicata 64 (1997), 157-191 Zbl0893.14019MR1436764
- C. Segre, Su una classe di superficie degl’iperspazii legate colle equazioni lineari alle derivate parziali di 2 ordine, Atti della R. Accademia delle Scienze di Torino 42 (1906), 559-591
- C. Segre, Preliminari di una teoria delle varieta luoghi di spazi, Rendiconti del Circolo Matematico di Palermo 30 (1910), 87-121
- C. Segre, Le superficie degli iperspazi con una doppia infinita di curve piane o spaziali, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur 56 (1920), 75-89
- A. Terracini, Sulle per cui la varieta degli –seganti ha dimensione minore dell’ ordinario, Rend. Circ. Mat. Palermo 31 (1911), 392-396 Zbl42.0673.02
- F. Zak, Tangents and secants of algebraic varieties, 127 (1993), American Mathematical Society, Providence, R.I Zbl0795.14018MR1234494
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.