On fundamental groups of algebraic varieties and value distribution theory
- [1] Kumamoto University Graduate School of Science and Technology Kurokami, Kumamoto 860-8555 (Japan)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 2, page 551-563
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topYamanoi, Katsutoshi. "On fundamental groups of algebraic varieties and value distribution theory." Annales de l’institut Fourier 60.2 (2010): 551-563. <http://eudml.org/doc/116281>.
@article{Yamanoi2010,
abstract = {If a smooth projective variety $X$ admits a non-degenerate holomorphic map $\mathbb\{C\}\rightarrow X$ from the complex plane $\mathbb\{C\}$, then for any finite dimensional linear representation of the fundamental group of $X$ the image of this representation is almost abelian. This supports a conjecture proposed by F. Campana, published in this journal in 2004.},
affiliation = {Kumamoto University Graduate School of Science and Technology Kurokami, Kumamoto 860-8555 (Japan)},
author = {Yamanoi, Katsutoshi},
journal = {Annales de l’institut Fourier},
keywords = {Value distribution theory; holomorphic map; fundamental group; algebraic variety; value distribution theory; entire curve},
language = {eng},
number = {2},
pages = {551-563},
publisher = {Association des Annales de l’institut Fourier},
title = {On fundamental groups of algebraic varieties and value distribution theory},
url = {http://eudml.org/doc/116281},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Yamanoi, Katsutoshi
TI - On fundamental groups of algebraic varieties and value distribution theory
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 551
EP - 563
AB - If a smooth projective variety $X$ admits a non-degenerate holomorphic map $\mathbb{C}\rightarrow X$ from the complex plane $\mathbb{C}$, then for any finite dimensional linear representation of the fundamental group of $X$ the image of this representation is almost abelian. This supports a conjecture proposed by F. Campana, published in this journal in 2004.
LA - eng
KW - Value distribution theory; holomorphic map; fundamental group; algebraic variety; value distribution theory; entire curve
UR - http://eudml.org/doc/116281
ER -
References
top- Norbert A’Campo, Marc Burger, Réseaux arithmétiques et commensurateur d’après G. A. Margulis, Invent. Math. 116 (1994), 1-25 Zbl0833.22014MR1253187
- Gregery T. Buzzard, Steven S. Y. Lu, Algebraic surfaces holomorphically dominable by , Invent. Math. 139 (2000), 617-659 Zbl0967.14025MR1738063
- F. Campana, Ensembles de Green-Lazarsfeld et quotients résolubles des groupes de Kähler, J. Algebraic Geom. 10 (2001), 599-622 Zbl1072.14512MR1838973
- Frédéric Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), 499-630 Zbl1062.14014MR2097416
- Philippe Eyssidieux, Sur la convexité holomorphe des revêtements linéaires réductifs d’une variété projective algébrique complexe, Invent. Math. 156 (2004), 503-564 Zbl1064.32007MR2061328
- Phillip Griffiths, Wilfried Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253-302 Zbl0209.25701MR259958
- Phillip Griffiths, Wilfried Schmid, Recent developments in Hodge theory: a discussion of techniques and results, Discrete subgroups of Lie groups and applicatons to moduli (Internat. Colloq., Bombay, 1973) (1975), 31-127, Oxford Univ. Press, Bombay Zbl0355.14003MR419850
- Mikhail Gromov, Richard Schoen, Harmonic maps into singular spaces and -adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992), 165-246 Zbl0896.58024MR1215595
- J. Jost, K. Zuo, Harmonic maps into Bruhat-Tits buildings and factorizations of -adically unbounded representations of of algebraic varieties. I, J. Algebraic Geom. 9 (2000), 1-42 Zbl0984.14011MR1713518
- L. Katzarkov, On the Shafarevich maps, Algebraic geometry—Santa Cruz 1995 62 (1997), 173-216, Amer. Math. Soc., Providence, RI Zbl0906.14007MR1492537
- János Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), 177-215 Zbl0819.14006MR1223229
- Junjiro Noguchi, Meromorphic mappings of a covering space over into a projective variety and defect relations, Hiroshima Math. J. 6 (1976), 265-280 Zbl0338.32016MR422694
- Junjiro Noguchi, On the value distribution of meromorphic mappings of covering spaces over into algebraic varieties, J. Math. Soc. Japan 37 (1985), 295-313 Zbl0566.32019MR780664
- Junjiro Noguchi, Takushiro Ochiai, Geometric function theory in several complex variables, 80 (1990), American Mathematical Society, Providence, RI Zbl0713.32001MR1084378
- Junjiro Noguchi, Jörg Winkelmann, Katsutoshi Yamanoi, Degeneracy of holomorphic curves into algebraic varieties, J. Math. Pures Appl. (9) 88 (2007), 293-306 Zbl1135.32018MR2355461
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992), 5-95 Zbl0814.32003MR1179076
- Katsutoshi Yamanoi, Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties II Zbl1073.32007
- Katsutoshi Yamanoi, Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties, Forum Math. 16 (2004), 749-788 Zbl1073.32007MR2096686
- Robert J. Zimmer, Ergodic theory and semisimple groups, 81 (1984), Birkhäuser Verlag, Basel Zbl0571.58015MR776417
- Kang Zuo, Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of of compact Kähler manifolds, J. Reine Angew. Math. 472 (1996), 139-156 Zbl0838.14017MR1384908
- Kang Zuo, Representations of fundamental groups of algebraic varieties, 1708 (1999), Springer-Verlag, Berlin Zbl0987.14014MR1738433
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.