On fundamental groups of algebraic varieties and value distribution theory

Katsutoshi Yamanoi[1]

  • [1] Kumamoto University Graduate School of Science and Technology Kurokami, Kumamoto 860-8555 (Japan)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 2, page 551-563
  • ISSN: 0373-0956

Abstract

top
If a smooth projective variety X admits a non-degenerate holomorphic map X from the complex plane , then for any finite dimensional linear representation of the fundamental group of X the image of this representation is almost abelian. This supports a conjecture proposed by F. Campana, published in this journal in 2004.

How to cite

top

Yamanoi, Katsutoshi. "On fundamental groups of algebraic varieties and value distribution theory." Annales de l’institut Fourier 60.2 (2010): 551-563. <http://eudml.org/doc/116281>.

@article{Yamanoi2010,
abstract = {If a smooth projective variety $X$ admits a non-degenerate holomorphic map $\mathbb\{C\}\rightarrow X$ from the complex plane $\mathbb\{C\}$, then for any finite dimensional linear representation of the fundamental group of $X$ the image of this representation is almost abelian. This supports a conjecture proposed by F. Campana, published in this journal in 2004.},
affiliation = {Kumamoto University Graduate School of Science and Technology Kurokami, Kumamoto 860-8555 (Japan)},
author = {Yamanoi, Katsutoshi},
journal = {Annales de l’institut Fourier},
keywords = {Value distribution theory; holomorphic map; fundamental group; algebraic variety; value distribution theory; entire curve},
language = {eng},
number = {2},
pages = {551-563},
publisher = {Association des Annales de l’institut Fourier},
title = {On fundamental groups of algebraic varieties and value distribution theory},
url = {http://eudml.org/doc/116281},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Yamanoi, Katsutoshi
TI - On fundamental groups of algebraic varieties and value distribution theory
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 551
EP - 563
AB - If a smooth projective variety $X$ admits a non-degenerate holomorphic map $\mathbb{C}\rightarrow X$ from the complex plane $\mathbb{C}$, then for any finite dimensional linear representation of the fundamental group of $X$ the image of this representation is almost abelian. This supports a conjecture proposed by F. Campana, published in this journal in 2004.
LA - eng
KW - Value distribution theory; holomorphic map; fundamental group; algebraic variety; value distribution theory; entire curve
UR - http://eudml.org/doc/116281
ER -

References

top
  1. Norbert A’Campo, Marc Burger, Réseaux arithmétiques et commensurateur d’après G. A. Margulis, Invent. Math. 116 (1994), 1-25 Zbl0833.22014MR1253187
  2. Gregery T. Buzzard, Steven S. Y. Lu, Algebraic surfaces holomorphically dominable by C 2 , Invent. Math. 139 (2000), 617-659 Zbl0967.14025MR1738063
  3. F. Campana, Ensembles de Green-Lazarsfeld et quotients résolubles des groupes de Kähler, J. Algebraic Geom. 10 (2001), 599-622 Zbl1072.14512MR1838973
  4. Frédéric Campana, Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), 499-630 Zbl1062.14014MR2097416
  5. Philippe Eyssidieux, Sur la convexité holomorphe des revêtements linéaires réductifs d’une variété projective algébrique complexe, Invent. Math. 156 (2004), 503-564 Zbl1064.32007MR2061328
  6. Phillip Griffiths, Wilfried Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253-302 Zbl0209.25701MR259958
  7. Phillip Griffiths, Wilfried Schmid, Recent developments in Hodge theory: a discussion of techniques and results, Discrete subgroups of Lie groups and applicatons to moduli (Internat. Colloq., Bombay, 1973) (1975), 31-127, Oxford Univ. Press, Bombay Zbl0355.14003MR419850
  8. Mikhail Gromov, Richard Schoen, Harmonic maps into singular spaces and p -adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. (1992), 165-246 Zbl0896.58024MR1215595
  9. J. Jost, K. Zuo, Harmonic maps into Bruhat-Tits buildings and factorizations of p -adically unbounded representations of π 1 of algebraic varieties. I, J. Algebraic Geom. 9 (2000), 1-42 Zbl0984.14011MR1713518
  10. L. Katzarkov, On the Shafarevich maps, Algebraic geometry—Santa Cruz 1995 62 (1997), 173-216, Amer. Math. Soc., Providence, RI Zbl0906.14007MR1492537
  11. János Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), 177-215 Zbl0819.14006MR1223229
  12. Junjiro Noguchi, Meromorphic mappings of a covering space over C m into a projective variety and defect relations, Hiroshima Math. J. 6 (1976), 265-280 Zbl0338.32016MR422694
  13. Junjiro Noguchi, On the value distribution of meromorphic mappings of covering spaces over C m into algebraic varieties, J. Math. Soc. Japan 37 (1985), 295-313 Zbl0566.32019MR780664
  14. Junjiro Noguchi, Takushiro Ochiai, Geometric function theory in several complex variables, 80 (1990), American Mathematical Society, Providence, RI Zbl0713.32001MR1084378
  15. Junjiro Noguchi, Jörg Winkelmann, Katsutoshi Yamanoi, Degeneracy of holomorphic curves into algebraic varieties, J. Math. Pures Appl. (9) 88 (2007), 293-306 Zbl1135.32018MR2355461
  16. Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992), 5-95 Zbl0814.32003MR1179076
  17. Katsutoshi Yamanoi, Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties II Zbl1073.32007
  18. Katsutoshi Yamanoi, Holomorphic curves in abelian varieties and intersections with higher codimensional subvarieties, Forum Math. 16 (2004), 749-788 Zbl1073.32007MR2096686
  19. Robert J. Zimmer, Ergodic theory and semisimple groups, 81 (1984), Birkhäuser Verlag, Basel Zbl0571.58015MR776417
  20. Kang Zuo, Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of π 1 of compact Kähler manifolds, J. Reine Angew. Math. 472 (1996), 139-156 Zbl0838.14017MR1384908
  21. Kang Zuo, Representations of fundamental groups of algebraic varieties, 1708 (1999), Springer-Verlag, Berlin Zbl0987.14014MR1738433

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.