Orbifolds, special varieties and classification theory
- [1] Université Nancy 1, département de mathématiques, BP 239, 54506 Vandoeuvre-les-Nancy (France)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 3, page 499-630
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCampana, Frédéric. "Orbifolds, special varieties and classification theory." Annales de l’institut Fourier 54.3 (2004): 499-630. <http://eudml.org/doc/116120>.
@article{Campana2004,
abstract = {This article gives a description, by means of functorial intrinsic fibrations, of the
geometric structure (and conjecturally also of the Kobayashi pseudometric, as well as of
the arithmetic in the projective case) of compact Kähler manifolds. We first define
special manifolds as being the compact Kähler manifolds with no meromorphic map onto an
orbifold of general type, the orbifold structure on the base being given by the divisor
of multiple fibres. We next show that rationally connected Kähler manifolds or
Kähler manifolds with zero Kodaira dimension are special. For any $X$, we then construct
the unique functorial fibration $c_X:X\rightarrow C(X)$ (called its core), such that its
general fibre is special, and its orbifold base is either of general type, or a point
(the last case occuring if and only if $X$ is special). We next show that the core has a
canonical and functorial decomposition as a tower of fibrations with generic (orbifold)
fibres either $\kappa $-rationally generated (a weak version of rational connectedness),
or with zero Kodaira dimension. In particular, special manifolds are thus canonically
towers of such fibrations. The main technical ingredient in the proofs is an orbifold
version of Iitaka’s $C_\{n,m\}$ additivity conjecture, proved here when the orbifold base
is of general type. The core of $X$ also gives a very simple conjectural qualitative of
description of both the Kobayashi pseudometric and the distribution of its $K$-rational
points (if $X$ is projective), description which reduces to Lang’s conjectures when $X$ is of general type.},
affiliation = {Université Nancy 1, département de mathématiques, BP 239, 54506 Vandoeuvre-les-Nancy (France)},
author = {Campana, Frédéric},
journal = {Annales de l’institut Fourier},
keywords = {canonical bundle; Kodaira dimension; orbifold; Kähler manifold; rational connectedness; fibration; Albanese map; Kobayashi pseudometric; rational point; Kähler manifolds; fibrations; varieties of general type; hyperbolic manifolds; arithmetic geometry; birational geometry},
language = {eng},
number = {3},
pages = {499-630},
publisher = {Association des Annales de l'Institut Fourier},
title = {Orbifolds, special varieties and classification theory},
url = {http://eudml.org/doc/116120},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Campana, Frédéric
TI - Orbifolds, special varieties and classification theory
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 499
EP - 630
AB - This article gives a description, by means of functorial intrinsic fibrations, of the
geometric structure (and conjecturally also of the Kobayashi pseudometric, as well as of
the arithmetic in the projective case) of compact Kähler manifolds. We first define
special manifolds as being the compact Kähler manifolds with no meromorphic map onto an
orbifold of general type, the orbifold structure on the base being given by the divisor
of multiple fibres. We next show that rationally connected Kähler manifolds or
Kähler manifolds with zero Kodaira dimension are special. For any $X$, we then construct
the unique functorial fibration $c_X:X\rightarrow C(X)$ (called its core), such that its
general fibre is special, and its orbifold base is either of general type, or a point
(the last case occuring if and only if $X$ is special). We next show that the core has a
canonical and functorial decomposition as a tower of fibrations with generic (orbifold)
fibres either $\kappa $-rationally generated (a weak version of rational connectedness),
or with zero Kodaira dimension. In particular, special manifolds are thus canonically
towers of such fibrations. The main technical ingredient in the proofs is an orbifold
version of Iitaka’s $C_{n,m}$ additivity conjecture, proved here when the orbifold base
is of general type. The core of $X$ also gives a very simple conjectural qualitative of
description of both the Kobayashi pseudometric and the distribution of its $K$-rational
points (if $X$ is projective), description which reduces to Lang’s conjectures when $X$ is of general type.
LA - eng
KW - canonical bundle; Kodaira dimension; orbifold; Kähler manifold; rational connectedness; fibration; Albanese map; Kobayashi pseudometric; rational point; Kähler manifolds; fibrations; varieties of general type; hyperbolic manifolds; arithmetic geometry; birational geometry
UR - http://eudml.org/doc/116120
ER -
References
top- D. Abramovich, Lang's map and Harris conjecture, Isr. J. Math. 101 (1997), 85-91 Zbl0933.14002MR1484870
- D. Arapura, M. Nori, Solvable Fundamental Groups of Algebraic Varieties and Kähler Manifolds, Comp. Math. 116 (1999), 173-193 Zbl0971.14020MR1686777
- D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique de dimension finie, LNM 482 (1975), 1-158 Zbl0331.32008MR399503
- W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, Band 4 (1984), Springer Verlag Zbl0718.14023MR749574
- A. Beauville, Annulation du pour les fibrés en droites plats, Proceedings Bayreuth 1989 1507 (1992), 1-15 Zbl0792.14006
- J. Bingener, H. Flenner, On the fibers of analytic mappings, Complex Analysis and Geometry (1993), 45-102, Plenum Press Zbl0792.13005
- S. Bloch, Sur les systèmes de fonctions uniformes satisfaisant l'équation d'une variété algébrique dont l'irrégularité dépasse la dimension, J. Math. Pures et Appliquées 5 (1926), 19-66 Zbl52.0373.04
- F.A. Bogomolov, Holomorphic Tensors and vector Bundles on Projective Varieties, Math. USSR. Izv. 13 (1979), 499-555 Zbl0439.14002
- F.A. Bogomolov, Y. Tschinkel, Density of rational points on elliptic K3 surfaces, Asian Math. J. 4 (2000), 351-368 Zbl0983.14008MR1797587
- F.A. Bogomolov, Y. Tschinkel, Special Elliptic Fibrations Zbl1069.14009
- M. Brunella, Courbes entières dans les surfaces algébriques complexes, Séminaire Bourbaki Exposé 881 (Novembre 2000) Zbl1031.14014
- G. Buzzard, S. Lu, Algebraic surfaces holomorphically dominable by , Inv. Math. 139 (2000), 617-659 Zbl0967.14025MR1738063
- F. Campana, Réduction algébrique d'un morphisme faiblement Kählérien propre et applications, Math. Ann. 256 (1980), 157-189 Zbl0461.32010MR620706
- F. Campana, Coréduction algébrique d'un espace analytique faiblement Kählérien compact, Inv. Math. 63 (1981), 187-223 Zbl0436.32024MR610537
- F. Campana, Réduction d'Albanese d'un morphisme faiblement Kählérien propre et applications I, II, Comp. Math. 54 (1985), 373-416 Zbl0609.32008MR791507
- F. Campana, An application of twistor theory to the non-hyperbolicity of certain compact symplectic Kähler manifolds, J. Reine. Angew. Math 425 (1992) Zbl0738.53037MR1151311
- F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sc. ENS. 25 (1992), 539-545 Zbl0783.14022MR1191735
- F. Campana, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. S.M.F 122 (1994), 255-284 Zbl0810.32013MR1273904
- F. Campana, Fundamental Group and Positivity Properties of Cotangent Bundles of Compact Kähler Manifolds, J. Alg. Geom. 4 (1995), 487-505 Zbl0845.32027MR1325789
- F. Campana, Negativity of compact curves in infinite étale covers of projective surfaces, J. Alg. Geom. 7 (1998), 673-693 Zbl0951.14009MR1642728
- F. Campana, Ensembles de Green-Lazarsfeld et quotients résolubles des groupes de Kähler, J. Alg. Geom. 10 (2001), 599-622 Zbl1072.14512MR1838973
- F. Campana, Special Varieties and Classification Theory Zbl1059.14047
- F. Campana, Special Varieties and Classification Theory: An overview, Acta Applicandae Mathematicae 75 (2003), 29-49 Zbl1059.14047MR1975557
- F. Campana, Orbifolds, special varieties and classification theory: appendix., Ann. Inst. Fourier 54 (2004), 631-665 Zbl1062.14015MR2097417
- F. Campana, T. Peternell, Complex Threefolds with Non-trivial holomorphic 2-Forms, J. Alg. Geom. 9 (2000), 223-264 Zbl0994.32016MR1735771
- F. Campana, Q. Zhang, Kähler threefolds covered by , (1999)
- J. L. Colliot-Thélène, Arithmétique des variétés rationnelles et problèmes birationnels, Proc. ICM Berkeley (1986), 641-653 Zbl0698.14060MR934267
- J. L. Colliot-Thélène, A. Skorobogatov, P. Swinnerton-Dyer, Double fibers and double covers: paucity in rational points, Acta Arithm. 79 (1997), 113-135 Zbl0863.14011MR1438597
- D. Cox, Mordell-Weil groups of elliptic curves over with , or , Duke Math. J. 49 (1982), 677-689 Zbl0503.14018MR672502
- H. Darmon, A. Granville, On the equations and , Bull. London Math. Soc. 27 (1995), 513-543 Zbl0838.11023MR1348707
- O. Debarre, Higher-Dimensional Algebraic Geometry, (2001), Springer Verlag Zbl0978.14001MR1841091
- J.-P. Demailly, J. El Goul, Hyperbolicity of generic hypersurfaces in the projective 3-space, Amer. J. Math. 122 (2000), 515-546 Zbl0966.32014MR1759887
- J.-P. Demailly, L. Lempert, B. Shiffman, Algebraic approximations of holomorphic maps from Stein domains to projective manifolds, Duke Math. J. 76 (1994), 333-363 Zbl0861.32006MR1302317
- J.-P. Demailly, T. Peternell, M. Schneider, Kähler manifolds with numerically effective Ricci class, Comp. Math. 89 (1993), 217-240 Zbl0884.32023MR1255695
- J.-P. Demailly, T. Peternell, M. Schneider, Compact Kähler Manifolds with hermitian semipositive anticanonical bundle, Comp. Math. 101 (1996), 217-224 Zbl1008.32008MR1389367
- H. Esnault, Classification des variétés de dimension 3 et plus, Séminaire Bourbaki Exposé 568 (1980/81) Zbl0481.14013
- G. Faltings, The general case of S. Lang's Conjecture, The Barsotti Symposium (1994), 175-182, Academic Press, Cambridge Mass Zbl0823.14009
- L. Fong, J. Mc, Kernan, Log Abundance For Surfaces, Flips And Abundance for Algebraic Threefolds 211 (1992), 127-137, Soc. Math. de France Zbl0807.14029
- R. Friedman, J. Morgan, Smooth Four-Manifolds and Complex Surfaces, 27 (1994), Springer Verlag Zbl0817.14017MR1288304
- A. Fujiki, On the Douady Space of a complex space in , Publ. RIMS (1982) Zbl0445.32017
- T. Fujita, On Kähler fibre spaces over curves, J. Math. Soc. Jap. 30 (1978), 779-794 Zbl0393.14006MR513085
- T. Graber, M. Harris, J. Starr, Families of rationally connected varieties, (2001) Zbl1092.14063
- H. Grauert, Jetmetriken und hyperbolische Geometrie, Math. Z. 200 (1989), 149-168 Zbl0664.32020MR978291
- H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. Math. IHES 5 (1960), 1-64 Zbl0100.08001MR121814
- H. Grauert, Mordell’s Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörpern, Publ. Math. IHES 25 (1965), 131-149 Zbl0137.40503MR222087
- M. Hindry, J. Silverman, Diophantine Geometry: an Introduction, 201 (2000), Springer-Verlag Zbl0948.11023MR1745599
- J. Harris, Y. Tschinkel, Rational points on quartics, Duke Math. J. 104 (2000), 477-500 Zbl0982.14013MR1781480
- S. Iitaka, Genera and Classification of Algebraic Varieties, Sugaku 24 (1972), 14-27 Zbl0236.14015MR569689
- S. Iitaka, On Algebraic Varieties whose Universal covering Manifolds are Complex Affine -space, (1973), Tokyo Kunikuniya Zbl0271.14015
- V.A. Kaimanovitch, Brownian Motion and Harmonic Functions on Covering Manifolds. An Entropy Approach., Sov. Math. Dokl. 33 (1986), 812-816 Zbl0615.60074
- Y. Kawamata, On Bloch's Conjecture, Inv. Math. 57 (1980), 97-100 Zbl0569.32012MR564186
- Y. Kawamata, Characterization of Abelian Varieties, Comp. Math. (1981), 253-276 Zbl0471.14022MR622451
- Y. Kawamata, Pluricanonical Forms, Contemp. Math. 241 (1999), 193-209 Zbl0972.14005MR1718145
- Y. Kawamata, E. Viehweg, On a characterization of an Abelian Variety, Comp. Math. 41 (1980), 355-359 Zbl0417.14033MR589087
- Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the Minimal Model Problem, Adv. Studies in Pure Mathematics 10 (1987), 283-360 Zbl0672.14006MR946243
- S. Keel, S. McKiernan, Rational curves on quasi-projective surfaces, Memoirs AMS 669 (1999) Zbl0955.14031
- S. Kobayashi, Hyperbolic complex spaces, 318 (1998), Springer Verlag Zbl0917.32019MR1635983
- S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. AMS 82 (1976), 357-416 Zbl0346.32031MR414940
- S. Kobayashi, T. Ochiai, Meromorphic mappings into compact complex spaces of general type, Inv. Math. 31 (1975), 7-16 Zbl0331.32020MR402127
- J. Kollár, Higher direct image sheaves of dualising sheaves, Ann. Math. 123 (1986), 11-42 Zbl0598.14015MR825838
- J. Kollár, Rational curves on Algebraic varieties, 32 (1996), Springer Verlag Zbl0877.14012MR1440180
- J. Kollár, Shafarevitch maps and plurigenera of Algebraic Varieties, Inv. Math. 113 (1993), 177-215 Zbl0819.14006MR1223229
- J. Kollár, Y. Miyaoka, S. Mori, Rationally connected Varieties, J. Alg. Geom. 1 (1992), 429-448 Zbl0780.14026MR1158625
- J. Kollár, S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics 134 (1998) Zbl0926.14003MR1658959
- S. Lang, Hyperbolic and Diophantine Analysis, Bull. AMS 14 (1986), 159-205 Zbl0602.14019MR828820
- S. Lang, Number Theory III: Diophantine Geometry, vol. 60 (1991), Springer Verlag Zbl0744.14012MR1112552
- S. Lang, A. Néron, Rational points of Abelian Varieties over Function Fields, Amer. J. Math. 81 (1959), 95-118 Zbl0099.16103MR102520
- D. Liebermann, Compactness of the Chow Scheme : Applications to automorphisms and deformations of Kähler Manifolds, 670 (1975), 140-186 Zbl0391.32018
- D. Liebermann, E. Sernesi, Semi-continuity of Kodaira dimension, Bull. Amer. Math. Soc. 81 (1975), 459-460 Zbl0308.14002
- S. Lu, Multiply marked Riemann surfaces and the Kobayashi pseudometric on Algebraic manifolds, Preprint (2001)
- K. Maehara, A finiteness Property of Varieties of General Type, Math. Ann. 262 (1983), 101-123 Zbl0438.14011MR690010
- Y. Manin, Rational Points of Algebraic Curves over Function Fields, Izv. Akad. Nauk. SSSR 27 (1963), 737-756 Zbl0178.55102MR157971
- Y. Miyaoka, On the Kodaira Dimension of Minimal Threefolds, Math. Ann. 281 (1988), 325-332 Zbl0625.14023MR949837
- B. Moishezon, Algebraic Varieties and Compact Complex Spaces, Actes du Congrès International des Mathématiciens, Nice Vol. 2 (1970), 643-648 Zbl0232.14004MR425189
- N. Mok, Factorisation of Semi-Simple Discrete Representations of Kähler Groups, Inv. Math. 110 (1992), 557-614 Zbl0823.53051
- S. Mori, Flip Theorem and the existence of Minimal Models for Threefolds, J. AMS 1 (1988), 117-253 Zbl0649.14023MR924704
- A. Moriwaki, Geometric Height inequality on Varieties with ample cotangent bundle, J. Alg. Geom. 4 (1995), 385-396 Zbl0873.14029MR1311357
- M. Namba, Branched Coverings and Algebraic Functions, 161 (1987), Longman Sc. and Tech. Zbl0706.14017MR933557
- N. Nakayama, Invariance of Plurigenera of algebraic Varieties, (1998) MR1660941
- J. Noguchi, Holomorphic mappings into closed Riemann Surfaces, Hiroshima Math. J. 6 (1976), 281-291 Zbl0338.32017MR422695
- T. Ochiai, On holomorphic curves in algebraic varieties with ample irregularity, Inv. Math. 26 (1976), 83-96 Zbl0374.32006MR473237
- M. Paun, Sur les variétés Kählériennes compactes à classe de Ricci nef, Bull. Sci. Math. 122 (1998), 83-92 Zbl0946.53037MR1613763
- A. N. Parshin, Algebraic Curves over Function Fields, Math. USSR Izv. 2 (1968), 1145-1170 Zbl0188.53003
- E. Peyre, Oral communication, (July 2001)
- M. Raynaud, Flat Modules in algebraic geometry, Comp. Math. 24 (1972), 11-31 Zbl0244.14001MR302645
- H. Swinnerton-Dyer, Applications of Algebraic Geometry to number Theory, Proc. Symp. Pure Math. XX (1969), 1-52 Zbl0228.14001MR337951
- D. Barlet, F. Campana, C. Sabbah, Séminaire: Géometrie Analytique (Deuxième partie), (1982)
- C. Simpson, Subspaces of Moduli Spaces of Rank One Local Systems, Ann. Sc. ENS. 26 (1993), 361-401 Zbl0798.14005MR1222278
- Y.T. Siu, Complex Analyticity of Harmonic Maps, J. Diff. Geom. 17 (1982), 55-138 Zbl0497.32025MR658472
- Y.T. Siu, Invariance of Plurigenera, Inventiones Math. 134 (1998), 661-673 Zbl0955.32017MR1660941
- Y.T. Siu, Extension of Pluricanonical Sections with Plurisubharmonic Weights, (2003), Springer Verlag
- V. Shokurov, 3-fold log-flips, Izv. Akad. Nauk. Ser. Mat. 56 (1992), 105-203 Zbl0785.14023MR1162635
- A. Sommese, A. Van de Ven, Homotopy of Pullback of Varieties, Nagoya Math. J. 102 (1986), 79-90 Zbl0564.14010MR846130
- K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Manifolds, 439 (1975), Springer Verlag Zbl0299.14007MR506253
- E. Viehweg, Die Additivität der Kodaira Dimension für Projektive Faserräume über Varietäten des Allgemeinen Typs, J. Reine Angew. Math. 330 (1982), 132-142 Zbl0466.14009MR641815
- E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Vol. I (1983), 329-353, North-Holland Zbl0513.14019
- E. Viehweg, Vanishing theorems and and positivity of Algebraic fibre spaces, J. Proc. Int. Congr. Math. Berkeley (1986) Zbl0685.14013
- C. Voisin, Intrinsic Pseudovolume Forms, (2002)
- Q. Zhang, On projective manifolds with nef anticanonical bundles, J. Reine. Angew. Math. 478 (1996), 57-60 Zbl0855.14007MR1409052
- K. Zuo, Factorisation theorems for representations of fundamental groups of algebraic varieties, (1997)
- H. Grauert, Berichtigung zu der Arbeit 'Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen', Publ. Math., Inst. Hautes Étud. Sci. 16 (1963), 131-132 Zbl0113.29103MR185614
- F. Campana, -connectedness of compact Kähler manifolds. I., Contemp. Math. 241 (1999), 85-96 Zbl0965.32021MR1718138
- K. Zuo, Representations of fundamental groups of algebraic varieties, 1708 (1999), Springer Verlag Zbl0987.14014MR1738433
Citations in EuDML Documents
top- Erwan Rousseau, Degeneracy of holomorphic maps via orbifolds
- Thomas Dedieu, Intrinsic pseudo-volume forms for logarithmic pairs
- Jörg Winkelmann, On Brody and entire curves
- Paolo Cascini, Subsheaves of the cotangent bundle
- Behrouz Taji, Birational positivity in dimension
- Katsutoshi Yamanoi, On fundamental groups of algebraic varieties and value distribution theory
- Benoît Claudon, Andreas Höring, Compact Kähler manifolds with compactifiable universal cover
- Franc Forstnerič, Oka manifolds: From Oka to Stein and back
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.