Orbifolds, special varieties and classification theory

Frédéric Campana[1]

  • [1] Université Nancy 1, département de mathématiques, BP 239, 54506 Vandoeuvre-les-Nancy (France)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 3, page 499-630
  • ISSN: 0373-0956

Abstract

top
This article gives a description, by means of functorial intrinsic fibrations, of the geometric structure (and conjecturally also of the Kobayashi pseudometric, as well as of the arithmetic in the projective case) of compact Kähler manifolds. We first define special manifolds as being the compact Kähler manifolds with no meromorphic map onto an orbifold of general type, the orbifold structure on the base being given by the divisor of multiple fibres. We next show that rationally connected Kähler manifolds or Kähler manifolds with zero Kodaira dimension are special. For any X , we then construct the unique functorial fibration c X : X C ( X ) (called its core), such that its general fibre is special, and its orbifold base is either of general type, or a point (the last case occuring if and only if X is special). We next show that the core has a canonical and functorial decomposition as a tower of fibrations with generic (orbifold) fibres either κ -rationally generated (a weak version of rational connectedness), or with zero Kodaira dimension. In particular, special manifolds are thus canonically towers of such fibrations. The main technical ingredient in the proofs is an orbifold version of Iitaka’s C n , m additivity conjecture, proved here when the orbifold base is of general type. The core of X also gives a very simple conjectural qualitative of description of both the Kobayashi pseudometric and the distribution of its K -rational points (if X is projective), description which reduces to Lang’s conjectures when X is of general type.

How to cite

top

Campana, Frédéric. "Orbifolds, special varieties and classification theory." Annales de l’institut Fourier 54.3 (2004): 499-630. <http://eudml.org/doc/116120>.

@article{Campana2004,
abstract = {This article gives a description, by means of functorial intrinsic fibrations, of the geometric structure (and conjecturally also of the Kobayashi pseudometric, as well as of the arithmetic in the projective case) of compact Kähler manifolds. We first define special manifolds as being the compact Kähler manifolds with no meromorphic map onto an orbifold of general type, the orbifold structure on the base being given by the divisor of multiple fibres. We next show that rationally connected Kähler manifolds or Kähler manifolds with zero Kodaira dimension are special. For any $X$, we then construct the unique functorial fibration $c_X:X\rightarrow C(X)$ (called its core), such that its general fibre is special, and its orbifold base is either of general type, or a point (the last case occuring if and only if $X$ is special). We next show that the core has a canonical and functorial decomposition as a tower of fibrations with generic (orbifold) fibres either $\kappa $-rationally generated (a weak version of rational connectedness), or with zero Kodaira dimension. In particular, special manifolds are thus canonically towers of such fibrations. The main technical ingredient in the proofs is an orbifold version of Iitaka’s $C_\{n,m\}$ additivity conjecture, proved here when the orbifold base is of general type. The core of $X$ also gives a very simple conjectural qualitative of description of both the Kobayashi pseudometric and the distribution of its $K$-rational points (if $X$ is projective), description which reduces to Lang’s conjectures when $X$ is of general type.},
affiliation = {Université Nancy 1, département de mathématiques, BP 239, 54506 Vandoeuvre-les-Nancy (France)},
author = {Campana, Frédéric},
journal = {Annales de l’institut Fourier},
keywords = {canonical bundle; Kodaira dimension; orbifold; Kähler manifold; rational connectedness; fibration; Albanese map; Kobayashi pseudometric; rational point; Kähler manifolds; fibrations; varieties of general type; hyperbolic manifolds; arithmetic geometry; birational geometry},
language = {eng},
number = {3},
pages = {499-630},
publisher = {Association des Annales de l'Institut Fourier},
title = {Orbifolds, special varieties and classification theory},
url = {http://eudml.org/doc/116120},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Campana, Frédéric
TI - Orbifolds, special varieties and classification theory
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 499
EP - 630
AB - This article gives a description, by means of functorial intrinsic fibrations, of the geometric structure (and conjecturally also of the Kobayashi pseudometric, as well as of the arithmetic in the projective case) of compact Kähler manifolds. We first define special manifolds as being the compact Kähler manifolds with no meromorphic map onto an orbifold of general type, the orbifold structure on the base being given by the divisor of multiple fibres. We next show that rationally connected Kähler manifolds or Kähler manifolds with zero Kodaira dimension are special. For any $X$, we then construct the unique functorial fibration $c_X:X\rightarrow C(X)$ (called its core), such that its general fibre is special, and its orbifold base is either of general type, or a point (the last case occuring if and only if $X$ is special). We next show that the core has a canonical and functorial decomposition as a tower of fibrations with generic (orbifold) fibres either $\kappa $-rationally generated (a weak version of rational connectedness), or with zero Kodaira dimension. In particular, special manifolds are thus canonically towers of such fibrations. The main technical ingredient in the proofs is an orbifold version of Iitaka’s $C_{n,m}$ additivity conjecture, proved here when the orbifold base is of general type. The core of $X$ also gives a very simple conjectural qualitative of description of both the Kobayashi pseudometric and the distribution of its $K$-rational points (if $X$ is projective), description which reduces to Lang’s conjectures when $X$ is of general type.
LA - eng
KW - canonical bundle; Kodaira dimension; orbifold; Kähler manifold; rational connectedness; fibration; Albanese map; Kobayashi pseudometric; rational point; Kähler manifolds; fibrations; varieties of general type; hyperbolic manifolds; arithmetic geometry; birational geometry
UR - http://eudml.org/doc/116120
ER -

References

top
  1. D. Abramovich, Lang's map and Harris conjecture, Isr. J. Math. 101 (1997), 85-91 Zbl0933.14002MR1484870
  2. D. Arapura, M. Nori, Solvable Fundamental Groups of Algebraic Varieties and Kähler Manifolds, Comp. Math. 116 (1999), 173-193 Zbl0971.14020MR1686777
  3. D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique de dimension finie, LNM 482 (1975), 1-158 Zbl0331.32008MR399503
  4. W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, Band 4 (1984), Springer Verlag Zbl0718.14023MR749574
  5. A. Beauville, Annulation du H 1 pour les fibrés en droites plats, Proceedings Bayreuth 1989 1507 (1992), 1-15 Zbl0792.14006
  6. J. Bingener, H. Flenner, On the fibers of analytic mappings, Complex Analysis and Geometry (1993), 45-102, Plenum Press Zbl0792.13005
  7. S. Bloch, Sur les systèmes de fonctions uniformes satisfaisant l'équation d'une variété algébrique dont l'irrégularité dépasse la dimension, J. Math. Pures et Appliquées 5 (1926), 19-66 Zbl52.0373.04
  8. F.A. Bogomolov, Holomorphic Tensors and vector Bundles on Projective Varieties, Math. USSR. Izv. 13 (1979), 499-555 Zbl0439.14002
  9. F.A. Bogomolov, Y. Tschinkel, Density of rational points on elliptic K3 surfaces, Asian Math. J. 4 (2000), 351-368 Zbl0983.14008MR1797587
  10. F.A. Bogomolov, Y. Tschinkel, Special Elliptic Fibrations Zbl1069.14009
  11. M. Brunella, Courbes entières dans les surfaces algébriques complexes, Séminaire Bourbaki Exposé 881 (Novembre 2000) Zbl1031.14014
  12. G. Buzzard, S. Lu, Algebraic surfaces holomorphically dominable by 𝒞 2 , Inv. Math. 139 (2000), 617-659 Zbl0967.14025MR1738063
  13. F. Campana, Réduction algébrique d'un morphisme faiblement Kählérien propre et applications, Math. Ann. 256 (1980), 157-189 Zbl0461.32010MR620706
  14. F. Campana, Coréduction algébrique d'un espace analytique faiblement Kählérien compact, Inv. Math. 63 (1981), 187-223 Zbl0436.32024MR610537
  15. F. Campana, Réduction d'Albanese d'un morphisme faiblement Kählérien propre et applications I, II, Comp. Math. 54 (1985), 373-416 Zbl0609.32008MR791507
  16. F. Campana, An application of twistor theory to the non-hyperbolicity of certain compact symplectic Kähler manifolds, J. Reine. Angew. Math 425 (1992) Zbl0738.53037MR1151311
  17. F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sc. ENS. 25 (1992), 539-545 Zbl0783.14022MR1191735
  18. F. Campana, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. S.M.F 122 (1994), 255-284 Zbl0810.32013MR1273904
  19. F. Campana, Fundamental Group and Positivity Properties of Cotangent Bundles of Compact Kähler Manifolds, J. Alg. Geom. 4 (1995), 487-505 Zbl0845.32027MR1325789
  20. F. Campana, Negativity of compact curves in infinite étale covers of projective surfaces, J. Alg. Geom. 7 (1998), 673-693 Zbl0951.14009MR1642728
  21. F. Campana, Ensembles de Green-Lazarsfeld et quotients résolubles des groupes de Kähler, J. Alg. Geom. 10 (2001), 599-622 Zbl1072.14512MR1838973
  22. F. Campana, Special Varieties and Classification Theory Zbl1059.14047
  23. F. Campana, Special Varieties and Classification Theory: An overview, Acta Applicandae Mathematicae 75 (2003), 29-49 Zbl1059.14047MR1975557
  24. F. Campana, Orbifolds, special varieties and classification theory: appendix., Ann. Inst. Fourier 54 (2004), 631-665 Zbl1062.14015MR2097417
  25. F. Campana, T. Peternell, Complex Threefolds with Non-trivial holomorphic 2-Forms, J. Alg. Geom. 9 (2000), 223-264 Zbl0994.32016MR1735771
  26. F. Campana, Q. Zhang, Kähler threefolds covered by 𝒞 3 , (1999) 
  27. J. L. Colliot-Thélène, Arithmétique des variétés rationnelles et problèmes birationnels, Proc. ICM Berkeley (1986), 641-653 Zbl0698.14060MR934267
  28. J. L. Colliot-Thélène, A. Skorobogatov, P. Swinnerton-Dyer, Double fibers and double covers: paucity in rational points, Acta Arithm. 79 (1997), 113-135 Zbl0863.14011MR1438597
  29. D. Cox, Mordell-Weil groups of elliptic curves over C ( t ) with p g = 0 , or 1 , Duke Math. J. 49 (1982), 677-689 Zbl0503.14018MR672502
  30. H. Darmon, A. Granville, On the equations z m = F ( x , y ) and A x p + B y q = C z r , Bull. London Math. Soc. 27 (1995), 513-543 Zbl0838.11023MR1348707
  31. O. Debarre, Higher-Dimensional Algebraic Geometry, (2001), Springer Verlag Zbl0978.14001MR1841091
  32. J.-P. Demailly, J. El Goul, Hyperbolicity of generic hypersurfaces in the projective 3-space, Amer. J. Math. 122 (2000), 515-546 Zbl0966.32014MR1759887
  33. J.-P. Demailly, L. Lempert, B. Shiffman, Algebraic approximations of holomorphic maps from Stein domains to projective manifolds, Duke Math. J. 76 (1994), 333-363 Zbl0861.32006MR1302317
  34. J.-P. Demailly, T. Peternell, M. Schneider, Kähler manifolds with numerically effective Ricci class, Comp. Math. 89 (1993), 217-240 Zbl0884.32023MR1255695
  35. J.-P. Demailly, T. Peternell, M. Schneider, Compact Kähler Manifolds with hermitian semipositive anticanonical bundle, Comp. Math. 101 (1996), 217-224 Zbl1008.32008MR1389367
  36. H. Esnault, Classification des variétés de dimension 3 et plus, Séminaire Bourbaki Exposé 568 (1980/81) Zbl0481.14013
  37. G. Faltings, The general case of S. Lang's Conjecture, The Barsotti Symposium (1994), 175-182, Academic Press, Cambridge Mass Zbl0823.14009
  38. L. Fong, J. Mc, Kernan, Log Abundance For Surfaces, Flips And Abundance for Algebraic Threefolds 211 (1992), 127-137, Soc. Math. de France Zbl0807.14029
  39. R. Friedman, J. Morgan, Smooth Four-Manifolds and Complex Surfaces, 27 (1994), Springer Verlag Zbl0817.14017MR1288304
  40. A. Fujiki, On the Douady Space of a complex space in 𝒞 , Publ. RIMS (1982) Zbl0445.32017
  41. T. Fujita, On Kähler fibre spaces over curves, J. Math. Soc. Jap. 30 (1978), 779-794 Zbl0393.14006MR513085
  42. T. Graber, M. Harris, J. Starr, Families of rationally connected varieties, (2001) Zbl1092.14063
  43. H. Grauert, Jetmetriken und hyperbolische Geometrie, Math. Z. 200 (1989), 149-168 Zbl0664.32020MR978291
  44. H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. Math. IHES 5 (1960), 1-64 Zbl0100.08001MR121814
  45. H. Grauert, Mordell’s Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörpern, Publ. Math. IHES 25 (1965), 131-149 Zbl0137.40503MR222087
  46. M. Hindry, J. Silverman, Diophantine Geometry: an Introduction, 201 (2000), Springer-Verlag Zbl0948.11023MR1745599
  47. J. Harris, Y. Tschinkel, Rational points on quartics, Duke Math. J. 104 (2000), 477-500 Zbl0982.14013MR1781480
  48. S. Iitaka, Genera and Classification of Algebraic Varieties, Sugaku 24 (1972), 14-27 Zbl0236.14015MR569689
  49. S. Iitaka, On Algebraic Varieties whose Universal covering Manifolds are Complex Affine 𝒞 3 -space, (1973), Tokyo Kunikuniya Zbl0271.14015
  50. V.A. Kaimanovitch, Brownian Motion and Harmonic Functions on Covering Manifolds. An Entropy Approach., Sov. Math. Dokl. 33 (1986), 812-816 Zbl0615.60074
  51. Y. Kawamata, On Bloch's Conjecture, Inv. Math. 57 (1980), 97-100 Zbl0569.32012MR564186
  52. Y. Kawamata, Characterization of Abelian Varieties, Comp. Math. (1981), 253-276 Zbl0471.14022MR622451
  53. Y. Kawamata, Pluricanonical Forms, Contemp. Math. 241 (1999), 193-209 Zbl0972.14005MR1718145
  54. Y. Kawamata, E. Viehweg, On a characterization of an Abelian Variety, Comp. Math. 41 (1980), 355-359 Zbl0417.14033MR589087
  55. Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the Minimal Model Problem, Adv. Studies in Pure Mathematics 10 (1987), 283-360 Zbl0672.14006MR946243
  56. S. Keel, S. McKiernan, Rational curves on quasi-projective surfaces, Memoirs AMS 669 (1999) Zbl0955.14031
  57. S. Kobayashi, Hyperbolic complex spaces, 318 (1998), Springer Verlag Zbl0917.32019MR1635983
  58. S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. AMS 82 (1976), 357-416 Zbl0346.32031MR414940
  59. S. Kobayashi, T. Ochiai, Meromorphic mappings into compact complex spaces of general type, Inv. Math. 31 (1975), 7-16 Zbl0331.32020MR402127
  60. J. Kollár, Higher direct image sheaves of dualising sheaves, Ann. Math. 123 (1986), 11-42 Zbl0598.14015MR825838
  61. J. Kollár, Rational curves on Algebraic varieties, 32 (1996), Springer Verlag Zbl0877.14012MR1440180
  62. J. Kollár, Shafarevitch maps and plurigenera of Algebraic Varieties, Inv. Math. 113 (1993), 177-215 Zbl0819.14006MR1223229
  63. J. Kollár, Y. Miyaoka, S. Mori, Rationally connected Varieties, J. Alg. Geom. 1 (1992), 429-448 Zbl0780.14026MR1158625
  64. J. Kollár, S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics 134 (1998) Zbl0926.14003MR1658959
  65. S. Lang, Hyperbolic and Diophantine Analysis, Bull. AMS 14 (1986), 159-205 Zbl0602.14019MR828820
  66. S. Lang, Number Theory III: Diophantine Geometry, vol. 60 (1991), Springer Verlag Zbl0744.14012MR1112552
  67. S. Lang, A. Néron, Rational points of Abelian Varieties over Function Fields, Amer. J. Math. 81 (1959), 95-118 Zbl0099.16103MR102520
  68. D. Liebermann, Compactness of the Chow Scheme : Applications to automorphisms and deformations of Kähler Manifolds, 670 (1975), 140-186 Zbl0391.32018
  69. D. Liebermann, E. Sernesi, Semi-continuity of Kodaira dimension, Bull. Amer. Math. Soc. 81 (1975), 459-460 Zbl0308.14002
  70. S. Lu, Multiply marked Riemann surfaces and the Kobayashi pseudometric on Algebraic manifolds, Preprint (2001) 
  71. K. Maehara, A finiteness Property of Varieties of General Type, Math. Ann. 262 (1983), 101-123 Zbl0438.14011MR690010
  72. Y. Manin, Rational Points of Algebraic Curves over Function Fields, Izv. Akad. Nauk. SSSR 27 (1963), 737-756 Zbl0178.55102MR157971
  73. Y. Miyaoka, On the Kodaira Dimension of Minimal Threefolds, Math. Ann. 281 (1988), 325-332 Zbl0625.14023MR949837
  74. B. Moishezon, Algebraic Varieties and Compact Complex Spaces, Actes du Congrès International des Mathématiciens, Nice Vol. 2 (1970), 643-648 Zbl0232.14004MR425189
  75. N. Mok, Factorisation of Semi-Simple Discrete Representations of Kähler Groups, Inv. Math. 110 (1992), 557-614 Zbl0823.53051
  76. S. Mori, Flip Theorem and the existence of Minimal Models for Threefolds, J. AMS 1 (1988), 117-253 Zbl0649.14023MR924704
  77. A. Moriwaki, Geometric Height inequality on Varieties with ample cotangent bundle, J. Alg. Geom. 4 (1995), 385-396 Zbl0873.14029MR1311357
  78. M. Namba, Branched Coverings and Algebraic Functions, 161 (1987), Longman Sc. and Tech. Zbl0706.14017MR933557
  79. N. Nakayama, Invariance of Plurigenera of algebraic Varieties, (1998) MR1660941
  80. J. Noguchi, Holomorphic mappings into closed Riemann Surfaces, Hiroshima Math. J. 6 (1976), 281-291 Zbl0338.32017MR422695
  81. T. Ochiai, On holomorphic curves in algebraic varieties with ample irregularity, Inv. Math. 26 (1976), 83-96 Zbl0374.32006MR473237
  82. M. Paun, Sur les variétés Kählériennes compactes à classe de Ricci nef, Bull. Sci. Math. 122 (1998), 83-92 Zbl0946.53037MR1613763
  83. A. N. Parshin, Algebraic Curves over Function Fields, Math. USSR Izv. 2 (1968), 1145-1170 Zbl0188.53003
  84. E. Peyre, Oral communication, (July 2001) 
  85. M. Raynaud, Flat Modules in algebraic geometry, Comp. Math. 24 (1972), 11-31 Zbl0244.14001MR302645
  86. H. Swinnerton-Dyer, Applications of Algebraic Geometry to number Theory, Proc. Symp. Pure Math. XX (1969), 1-52 Zbl0228.14001MR337951
  87. D. Barlet, F. Campana, C. Sabbah, Séminaire: Géometrie Analytique (Deuxième partie), (1982) 
  88. C. Simpson, Subspaces of Moduli Spaces of Rank One Local Systems, Ann. Sc. ENS. 26 (1993), 361-401 Zbl0798.14005MR1222278
  89. Y.T. Siu, Complex Analyticity of Harmonic Maps, J. Diff. Geom. 17 (1982), 55-138 Zbl0497.32025MR658472
  90. Y.T. Siu, Invariance of Plurigenera, Inventiones Math. 134 (1998), 661-673 Zbl0955.32017MR1660941
  91. Y.T. Siu, Extension of Pluricanonical Sections with Plurisubharmonic Weights, (2003), Springer Verlag 
  92. V. Shokurov, 3-fold log-flips, Izv. Akad. Nauk. Ser. Mat. 56 (1992), 105-203 Zbl0785.14023MR1162635
  93. A. Sommese, A. Van de Ven, Homotopy of Pullback of Varieties, Nagoya Math. J. 102 (1986), 79-90 Zbl0564.14010MR846130
  94. K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Manifolds, 439 (1975), Springer Verlag Zbl0299.14007MR506253
  95. E. Viehweg, Die Additivität der Kodaira Dimension für Projektive Faserräume über Varietäten des Allgemeinen Typs, J. Reine Angew. Math. 330 (1982), 132-142 Zbl0466.14009MR641815
  96. E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Vol. I (1983), 329-353, North-Holland Zbl0513.14019
  97. E. Viehweg, Vanishing theorems and and positivity of Algebraic fibre spaces, J. Proc. Int. Congr. Math. Berkeley (1986) Zbl0685.14013
  98. C. Voisin, Intrinsic Pseudovolume Forms, (2002) 
  99. Q. Zhang, On projective manifolds with nef anticanonical bundles, J. Reine. Angew. Math. 478 (1996), 57-60 Zbl0855.14007MR1409052
  100. K. Zuo, Factorisation theorems for representations of fundamental groups of algebraic varieties, (1997) 
  101. H. Grauert, Berichtigung zu der Arbeit 'Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen', Publ. Math., Inst. Hautes Étud. Sci. 16 (1963), 131-132 Zbl0113.29103MR185614
  102. F. Campana, 𝒢 -connectedness of compact Kähler manifolds. I., Contemp. Math. 241 (1999), 85-96 Zbl0965.32021MR1718138
  103. K. Zuo, Representations of fundamental groups of algebraic varieties, 1708 (1999), Springer Verlag Zbl0987.14014MR1738433

Citations in EuDML Documents

top
  1. Erwan Rousseau, Degeneracy of holomorphic maps via orbifolds
  2. Thomas Dedieu, Intrinsic pseudo-volume forms for logarithmic pairs
  3. Jörg Winkelmann, On Brody and entire curves
  4. Paolo Cascini, Subsheaves of the cotangent bundle
  5. Behrouz Taji, Birational positivity in dimension 4
  6. Katsutoshi Yamanoi, On fundamental groups of algebraic varieties and value distribution theory
  7. Benoît Claudon, Andreas Höring, Compact Kähler manifolds with compactifiable universal cover
  8. Franc Forstnerič, Oka manifolds: From Oka to Stein and back

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.