Poincaré - Verdier duality in o-minimal structures

Mário J. Edmundo[1]; Luca Prelli[2]

  • [1] Universidade Aberta & CMAF Universidade de Lisboa Av. Prof. Gama Pinto 2 1649-003 Lisboa (Portugal)
  • [2] Università di Padova Dipartimento di Matematica Pura ed Applicata Via Trieste 63 35121 Padova (Italy)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 4, page 1259-1288
  • ISSN: 0373-0956

Abstract

top
Here we prove a Poincaré - Verdier duality theorem for the o-minimal sheaf cohomology with definably compact supports of definably normal, definably locally compact spaces in an arbitrary o-minimal structure.

How to cite

top

Edmundo, Mário J., and Prelli, Luca. "Poincaré - Verdier duality in o-minimal structures." Annales de l’institut Fourier 60.4 (2010): 1259-1288. <http://eudml.org/doc/116303>.

@article{Edmundo2010,
abstract = {Here we prove a Poincaré - Verdier duality theorem for the o-minimal sheaf cohomology with definably compact supports of definably normal, definably locally compact spaces in an arbitrary o-minimal structure.},
affiliation = {Universidade Aberta & CMAF Universidade de Lisboa Av. Prof. Gama Pinto 2 1649-003 Lisboa (Portugal); Università di Padova Dipartimento di Matematica Pura ed Applicata Via Trieste 63 35121 Padova (Italy)},
author = {Edmundo, Mário J., Prelli, Luca},
journal = {Annales de l’institut Fourier},
keywords = {O-minimal structures; sheaf cohomology; o-minimal structures},
language = {eng},
number = {4},
pages = {1259-1288},
publisher = {Association des Annales de l’institut Fourier},
title = {Poincaré - Verdier duality in o-minimal structures},
url = {http://eudml.org/doc/116303},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Edmundo, Mário J.
AU - Prelli, Luca
TI - Poincaré - Verdier duality in o-minimal structures
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1259
EP - 1288
AB - Here we prove a Poincaré - Verdier duality theorem for the o-minimal sheaf cohomology with definably compact supports of definably normal, definably locally compact spaces in an arbitrary o-minimal structure.
LA - eng
KW - O-minimal structures; sheaf cohomology; o-minimal structures
UR - http://eudml.org/doc/116303
ER -

References

top
  1. A. Berarducci, M. Edmundo, M. Otero, Corrigendum to “Transfer methods for o-minimal topology”, J. Symb. Logic 72 (2007), 1079-1080 Zbl1119.03334MR2354917
  2. A. Berarducci, M. Otero, Transfer methods for o-minimal topology, J. Symb. Logic 68 (2003), 785-794 Zbl1060.03059MR2000077
  3. J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, (1998), Springer-Verlag Zbl0912.14023MR1659509
  4. G. Bredon, Sheaf theory, (1997), Springer-Verlag Zbl0874.55001MR1481706
  5. M. Coste, An introduction to o-minimal geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa (2000). Available in RAAG preprint server () MR2432120
  6. M. Coste, M.-F. Roy, La topologie du spectre réel, in Ordered fields and real algebraic geometry, Contemporary Mathematics 8 (1982), 27-59 Zbl0485.14007MR653174
  7. H. Delfs, The homotopy axiom in semi-algebraic sheaf cohomology, J. reine angew. Maths. 355 (1985), 108-128 Zbl0543.55004MR772485
  8. H. Delfs, Homology of locally semialgebraic spaces, (1991), Springer-Verlag Zbl0751.14033MR1176311
  9. H. Delfs, M. Knebusch, On the homology of algebraic varieties over real closed fields, J. reine u.angew. Math. 335 (1982), 122-163 Zbl0484.14006MR667464
  10. A. Dold, Lectures on algebraic topology, (1995), Springer-Verlag Zbl0872.55001MR1335915
  11. M. Edmundo, Covering definable manifolds by open definable subsets, 28 (2008), Lecture Notes in Logic Zbl1135.03012MR2395801
  12. M. Edmundo, G. Jones, N. Peatfield, Sheaf cohomology in o-minimal structures, J. Math. Logic 6 (2006), 163-179 Zbl1120.03024MR2317425
  13. M. Edmundo, M. Otero, Definably compact abelian groups, J. Math. Log. 4 (2004), 163-180 Zbl1070.03025MR2114966
  14. M. Edmundo, A. Woerheide, Comparation theorems for o-minimal singular (co)homology, Trans. Amer. Math. Soc. 360 (2008), 4889-4912 Zbl1153.03010MR2403708
  15. M. Edmundo, A. Woerheide, The Lefschetz coincidence theorem in o-minimal expansions of fields, Topology Appl. 156 (2009), 2470-2484 Zbl1179.55002MR2546949
  16. R. Godement, Théorie des faisceaux, (1958), Hermann Zbl0080.16201MR102797
  17. B. Iversen, Cohomology of sheaves, (1986), Springer Verlag Zbl1272.55001MR842190
  18. M. Kashiwara, P. Schapira, Sheaves on manifolds, (1990), Springer Verlag Zbl0709.18001MR1074006
  19. M. Kashiwara, P. Schapira, Ind-sheaves, 271 (2001), Astérisque Zbl0993.32009MR1827714
  20. M. Kashiwara, P. Schapira, Categories and sheaves, (2005), Springer Verlag Zbl1118.18001MR2182076
  21. A. Pillay, Sheaves of continuous definable functions, J. Symb. Logic 53 (1988), 1165-1169 Zbl0683.03018MR973106
  22. L. Prelli, Sheaves on subanalytic sites, Rend. Sem. Mat. Univ. Padova 120 (2008), 167-216 Zbl1171.32002MR2492657
  23. L. van den Dries, Tame topology and o-minimal structures, (1998), Cambridge University Press Zbl0953.03045MR1633348
  24. A. Wilkie, Covering definable open subsets by open cells, (2005), Cuvillier Verlag 
  25. A. Woerheide, O-minimal homology, PhD. Thesis (1996), University of Illinois at Urbana-Champaign 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.