Poincaré - Verdier duality in o-minimal structures
Mário J. Edmundo[1]; Luca Prelli[2]
- [1] Universidade Aberta & CMAF Universidade de Lisboa Av. Prof. Gama Pinto 2 1649-003 Lisboa (Portugal)
- [2] Università di Padova Dipartimento di Matematica Pura ed Applicata Via Trieste 63 35121 Padova (Italy)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 4, page 1259-1288
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEdmundo, Mário J., and Prelli, Luca. "Poincaré - Verdier duality in o-minimal structures." Annales de l’institut Fourier 60.4 (2010): 1259-1288. <http://eudml.org/doc/116303>.
@article{Edmundo2010,
abstract = {Here we prove a Poincaré - Verdier duality theorem for the o-minimal sheaf cohomology with definably compact supports of definably normal, definably locally compact spaces in an arbitrary o-minimal structure.},
affiliation = {Universidade Aberta & CMAF Universidade de Lisboa Av. Prof. Gama Pinto 2 1649-003 Lisboa (Portugal); Università di Padova Dipartimento di Matematica Pura ed Applicata Via Trieste 63 35121 Padova (Italy)},
author = {Edmundo, Mário J., Prelli, Luca},
journal = {Annales de l’institut Fourier},
keywords = {O-minimal structures; sheaf cohomology; o-minimal structures},
language = {eng},
number = {4},
pages = {1259-1288},
publisher = {Association des Annales de l’institut Fourier},
title = {Poincaré - Verdier duality in o-minimal structures},
url = {http://eudml.org/doc/116303},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Edmundo, Mário J.
AU - Prelli, Luca
TI - Poincaré - Verdier duality in o-minimal structures
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1259
EP - 1288
AB - Here we prove a Poincaré - Verdier duality theorem for the o-minimal sheaf cohomology with definably compact supports of definably normal, definably locally compact spaces in an arbitrary o-minimal structure.
LA - eng
KW - O-minimal structures; sheaf cohomology; o-minimal structures
UR - http://eudml.org/doc/116303
ER -
References
top- A. Berarducci, M. Edmundo, M. Otero, Corrigendum to “Transfer methods for o-minimal topology”, J. Symb. Logic 72 (2007), 1079-1080 Zbl1119.03334MR2354917
- A. Berarducci, M. Otero, Transfer methods for o-minimal topology, J. Symb. Logic 68 (2003), 785-794 Zbl1060.03059MR2000077
- J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, (1998), Springer-Verlag Zbl0912.14023MR1659509
- G. Bredon, Sheaf theory, (1997), Springer-Verlag Zbl0874.55001MR1481706
- M. Coste, An introduction to o-minimal geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa (2000). Available in RAAG preprint server () MR2432120
- M. Coste, M.-F. Roy, La topologie du spectre réel, in Ordered fields and real algebraic geometry, Contemporary Mathematics 8 (1982), 27-59 Zbl0485.14007MR653174
- H. Delfs, The homotopy axiom in semi-algebraic sheaf cohomology, J. reine angew. Maths. 355 (1985), 108-128 Zbl0543.55004MR772485
- H. Delfs, Homology of locally semialgebraic spaces, (1991), Springer-Verlag Zbl0751.14033MR1176311
- H. Delfs, M. Knebusch, On the homology of algebraic varieties over real closed fields, J. reine u.angew. Math. 335 (1982), 122-163 Zbl0484.14006MR667464
- A. Dold, Lectures on algebraic topology, (1995), Springer-Verlag Zbl0872.55001MR1335915
- M. Edmundo, Covering definable manifolds by open definable subsets, 28 (2008), Lecture Notes in Logic Zbl1135.03012MR2395801
- M. Edmundo, G. Jones, N. Peatfield, Sheaf cohomology in o-minimal structures, J. Math. Logic 6 (2006), 163-179 Zbl1120.03024MR2317425
- M. Edmundo, M. Otero, Definably compact abelian groups, J. Math. Log. 4 (2004), 163-180 Zbl1070.03025MR2114966
- M. Edmundo, A. Woerheide, Comparation theorems for o-minimal singular (co)homology, Trans. Amer. Math. Soc. 360 (2008), 4889-4912 Zbl1153.03010MR2403708
- M. Edmundo, A. Woerheide, The Lefschetz coincidence theorem in o-minimal expansions of fields, Topology Appl. 156 (2009), 2470-2484 Zbl1179.55002MR2546949
- R. Godement, Théorie des faisceaux, (1958), Hermann Zbl0080.16201MR102797
- B. Iversen, Cohomology of sheaves, (1986), Springer Verlag Zbl1272.55001MR842190
- M. Kashiwara, P. Schapira, Sheaves on manifolds, (1990), Springer Verlag Zbl0709.18001MR1074006
- M. Kashiwara, P. Schapira, Ind-sheaves, 271 (2001), Astérisque Zbl0993.32009MR1827714
- M. Kashiwara, P. Schapira, Categories and sheaves, (2005), Springer Verlag Zbl1118.18001MR2182076
- A. Pillay, Sheaves of continuous definable functions, J. Symb. Logic 53 (1988), 1165-1169 Zbl0683.03018MR973106
- L. Prelli, Sheaves on subanalytic sites, Rend. Sem. Mat. Univ. Padova 120 (2008), 167-216 Zbl1171.32002MR2492657
- L. van den Dries, Tame topology and o-minimal structures, (1998), Cambridge University Press Zbl0953.03045MR1633348
- A. Wilkie, Covering definable open subsets by open cells, (2005), Cuvillier Verlag
- A. Woerheide, O-minimal homology, PhD. Thesis (1996), University of Illinois at Urbana-Champaign
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.