Sheaves on subanalytic sites

Luca Prelli

Rendiconti del Seminario Matematico della Università di Padova (2008)

  • Volume: 120, page 167-216
  • ISSN: 0041-8994

How to cite

top

Prelli, Luca. "Sheaves on subanalytic sites." Rendiconti del Seminario Matematico della Università di Padova 120 (2008): 167-216. <http://eudml.org/doc/108741>.

@article{Prelli2008,
author = {Prelli, Luca},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {subanalytic site; ind-sheaf; Grothendieck operation},
language = {eng},
pages = {167-216},
publisher = {Seminario Matematico of the University of Padua},
title = {Sheaves on subanalytic sites},
url = {http://eudml.org/doc/108741},
volume = {120},
year = {2008},
}

TY - JOUR
AU - Prelli, Luca
TI - Sheaves on subanalytic sites
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2008
PB - Seminario Matematico of the University of Padua
VL - 120
SP - 167
EP - 216
LA - eng
KW - subanalytic site; ind-sheaf; Grothendieck operation
UR - http://eudml.org/doc/108741
ER -

References

top
  1. [1] E. BIERSTORNE - D. MILMANN, Semianalytic and subanalytic sets, Publ. I.H.E.S., 67 (1988), pp. 5-42. Zbl0674.32002MR972342
  2. [2] S. I. GELFAND - YU. I. MANIN, Methods of homological algebra, SpringerVerlag, Berlin (1996). Zbl0855.18001MR1438306
  3. [3] R. GODEMENT, Topologie algébrique et théorie des faisceaux, Hermann, Paris (1958). Zbl0080.16201MR102797
  4. [4] M. KASHIWARA, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto Univ., 20 (1984), pp. 319-365. Zbl0566.32023MR743382
  5. [5] M. KASHIWARA - P. SCHAPIRA, Sheaves on manifolds, Grundlehren der Math. 292, Springer-Verlag, Berlin (1990). Zbl0709.18001MR1074006
  6. [6] M. KASHIWARA - P. SCHAPIRA, Moderate and formal cohomology associated with constructible sheaves, Mémoires Soc. Math. France, 64 (1996). Zbl0881.58060MR1421293
  7. [7] M. KASHIWARA - P. SCHAPIRA, Ind-sheaves, Astérisque, 271 (2001). Zbl0993.32009MR1827714
  8. [8] M. KASHIWARA - P. SCHAPIRA, Categories and sheaves, Grundlehren der Math., 332, Springer-Verlag, Berlin (2005). Zbl1118.18001MR2182076
  9. [9] B. KELLER, Derived categories and their uses, Handbook of algebra vol. 1 pp. 671-701 North Holland, Amsterdam (1996). Zbl0862.18001MR1421815
  10. [10] S. LOJACIEWICZ, Sur la géométrie semi- et sous-analytique, Ann. Inst. Fourier, 43 (1993), pp. 1575-1595. Zbl0803.32002MR1275210
  11. [11] S. LOJACIEWICZ, Sur le problème de la division, Studia Mathematica, 8 (1959) pp. 87-136. Zbl0115.10203MR107168
  12. [12] B. MALGRANGE, Ideals of differentiable functions, Tata Institute, Oxford University Press (1967). Zbl0177.17902MR212575
  13. [13] L. PRELLI, Sheaves on subanalytic sites, Phd Thesis, Universities of Padova and Paris 6 (2006). Zbl1171.32002
  14. [14] G. TAMME, Introduction to étale cohomology, Universitext Springer-Verlag, Berlin (1994). Zbl0815.14012MR1317816
  15. [15] J. L. VERDIER, Catégories dérivées, état 0, SGA 41 2, Lecture Notes in Math., 569 Springer-Verlag, Berlin (1977). Zbl0407.18008
  16. [16] SGA4: Sém. Géom. Algébrique du Bois-Marie by M. Artin, A. Grothendieck, J. L. Verdier, Lecture Notes in Math. 269 Springer-Verlag, Berlin (1972). MR354653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.