Obstructions to deforming curves on a -fold, II: Deformations of degenerate curves on a del Pezzo -fold
- [1] Kyoto University Research Institute for Mathematical Sciences Kyoto 606-8502 (Japan)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 4, page 1289-1316
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNasu, Hirokazu. "Obstructions to deforming curves on a $3$-fold, II: Deformations of degenerate curves on a del Pezzo $3$-fold." Annales de l’institut Fourier 60.4 (2010): 1289-1316. <http://eudml.org/doc/116304>.
@article{Nasu2010,
abstract = {We study the Hilbert scheme $\textrm\{Hilb\}^\{sc\} V$ of smooth connected curves on a smooth del Pezzo $3$-fold $V$. We prove that any degenerate curve $C$, i.e. any curve $C$ contained in a smooth hyperplane section $S$ of $V$, does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) $\chi (V,\mathcal\{I\}_C(S))\ge 1$ and (ii) for every line $\ell $ on $S$ such that $\ell \cap C = \emptyset$, the normal bundle $N_\{\ell /V\}$ is trivial (i.e. $N_\{\ell /V\} \simeq \{\mathcal\{O\}_\{\mathbb\{P\}^1\}\}^\{\oplus 2\}$). As a consequence, we prove an analogue (for $\textrm\{Hilb\}^\{sc\} V$) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components of the Hilbert scheme $\textrm\{Hilb\}^\{sc\} \mathbb\{P\}^3$ of curves in the projective $3$-space $\mathbb\{P\}^3$.},
affiliation = {Kyoto University Research Institute for Mathematical Sciences Kyoto 606-8502 (Japan)},
author = {Nasu, Hirokazu},
journal = {Annales de l’institut Fourier},
keywords = {Hilbert scheme; infinitesimal deformation; del Pezzo variety},
language = {eng},
number = {4},
pages = {1289-1316},
publisher = {Association des Annales de l’institut Fourier},
title = {Obstructions to deforming curves on a $3$-fold, II: Deformations of degenerate curves on a del Pezzo $3$-fold},
url = {http://eudml.org/doc/116304},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Nasu, Hirokazu
TI - Obstructions to deforming curves on a $3$-fold, II: Deformations of degenerate curves on a del Pezzo $3$-fold
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 4
SP - 1289
EP - 1316
AB - We study the Hilbert scheme $\textrm{Hilb}^{sc} V$ of smooth connected curves on a smooth del Pezzo $3$-fold $V$. We prove that any degenerate curve $C$, i.e. any curve $C$ contained in a smooth hyperplane section $S$ of $V$, does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) $\chi (V,\mathcal{I}_C(S))\ge 1$ and (ii) for every line $\ell $ on $S$ such that $\ell \cap C = \emptyset$, the normal bundle $N_{\ell /V}$ is trivial (i.e. $N_{\ell /V} \simeq {\mathcal{O}_{\mathbb{P}^1}}^{\oplus 2}$). As a consequence, we prove an analogue (for $\textrm{Hilb}^{sc} V$) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components of the Hilbert scheme $\textrm{Hilb}^{sc} \mathbb{P}^3$ of curves in the projective $3$-space $\mathbb{P}^3$.
LA - eng
KW - Hilbert scheme; infinitesimal deformation; del Pezzo variety
UR - http://eudml.org/doc/116304
ER -
References
top- D. Curtin, Obstructions to deforming a space curve, Trans. Amer. Math. Soc. 267 (1981), 83-94 Zbl0477.14008MR621974
- Ph. Ellia, D’autres composantes non réduites de , Math. Ann. 277 (1987), 433-446 Zbl0635.14006MR891584
- G. Fløystad, Determining obstructions for space curves, with applications to non-reduced components of the Hilbert scheme, J. Reine Angew. Math. 439 (1993), 11-44 Zbl0765.14015MR1219693
- T. Fujita, On the structure of polarized manifolds with total deficiency one. I, J. Math. Soc. Japan 32 (1980), 709-725 Zbl0474.14017MR589109
- T. Fujita, On the structure of polarized manifolds with total deficiency one. II, J. Math. Soc. Japan 33 (1981), 415-434 Zbl0474.14018MR620281
- V. A. Iskovskih, Fano threefolds. I, Math. USSR-Izvstija 11 (1977), 485-527 Zbl0382.14013MR463151
- V. A. Iskovskih, Anticanonical models of three-dimensional algebraic varieties, Current problems in mathematics, J. Soviet Math. 13 (1980), 745-814 Zbl0428.14016MR537685
- Jan O. Kleppe, Non-reduced components of the Hilbert scheme of smooth space curves., Space curves, Proc. Conf., Rocca di Papa/Italy 1985, Lect. Notes in Math. 1266, 181–207 (1987) Zbl0631.14022MR908714
- Jan O. Kleppe, Liaison of families of subschemes in , Algebraic curves and projective geometry (Trento, 1988) 1389 (1989), 128-173, Springer, Berlin Zbl0697.14003MR1023396
- Jan O. Kleppe, The Hilbert scheme of space curves of small diameter, Annales de l’institut Fourier 56 (2006), 1297-1335 Zbl1117.14006MR2273858
- J. Kollár, Rational curves on algebraic varieties, 32 (1996), Springer-Verlag, Berlin Zbl0877.14012MR1440180
- Y. I. Manin, Cubic forms, 4 (1986), North-Holland Publishing Co., Amsterdam Zbl0582.14010MR833513
- Shigeru Mukai, Hirokazu Nasu, Obstructions to deforming curves on a 3-fold. I. A generalization of Mumford’s example and an application to Hom schemes, J. Algebraic Geom. 18 (2009), 691-709 Zbl1181.14031MR2524595
- D. Mumford, Further pathologies in algebraic geometry, Amer. J. Math. 84 (1962), 642-648 Zbl0114.13106MR148670
- Hirokazu Nasu, Obstructions to deforming space curves and non-reduced components of the Hilbert scheme, Publ. Res. Inst. Math. Sci. 42 (2006), 117-141 Zbl1100.14002MR2215438
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.