The Hilbert scheme of space curves of small diameter

Jan Oddvar Kleppe[1]

  • [1] Oslo University College Faculty of Engineering Pb. 4 St. Olavs plass 0130, Oslo (Norway)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 5, page 1297-1335
  • ISSN: 0373-0956

Abstract

top
This paper studies space curves C of degree d and arithmetic genus g , with homogeneous ideal I and Rao module M = H * 1 ( I ˜ ) , whose main results deal with curves which satisfy 0 Ext R 2 ( M , M ) = 0 (e.g. of diameter, diam M 2 ). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, H ( d , g ) , at ( C ) under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of C turns out to be equivalent to the vanishing of certain graded Betti numbers of the free minimal resolution of I . More generally by taking suitable deformations of C we show how to kill repeated direct free factors (“ghost-terms”) in the minimal resolution of I , leading to a rather concrete description of the number of irreducible components of H ( d , g ) which contains an obstructed diameter one curve. We also show that every irreducible component of H ( d , g ) is reduced in the diameter one case.

How to cite

top

Kleppe, Jan Oddvar. "The Hilbert scheme of space curves of small diameter." Annales de l’institut Fourier 56.5 (2006): 1297-1335. <http://eudml.org/doc/10178>.

@article{Kleppe2006,
abstract = {This paper studies space curves $C$ of degree $d$ and arithmetic genus $g$, with homogeneous ideal $I$ and Rao module $M = \textrm\{H\}_\{*\}^1(\tilde\{I\})$, whose main results deal with curves which satisfy $ \{_\{0\}\!\textrm\{Ext\}_R^2\}(M ,M ) = 0 $ (e.g. of diameter, $\textrm\{diam\} M \le 2$). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, $\textrm\{H\}(d,g)$, at $(C)$ under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of $C$ turns out to be equivalent to the vanishing of certain graded Betti numbers of the free minimal resolution of $I$. More generally by taking suitable deformations of $C$ we show how to kill repeated direct free factors (“ghost-terms”) in the minimal resolution of $I$, leading to a rather concrete description of the number of irreducible components of $\textrm\{H\}(d,g)$ which contains an obstructed diameter one curve. We also show that every irreducible component of $\textrm\{H\}(d,g)$ is reduced in the diameter one case.},
affiliation = {Oslo University College Faculty of Engineering Pb. 4 St. Olavs plass 0130, Oslo (Norway)},
author = {Kleppe, Jan Oddvar},
journal = {Annales de l’institut Fourier},
keywords = {Hilbert scheme; space curve; Buchsbaum curve; unobstructedness; cup-product; graded Betti numbers; ghost term; linkage; normal module; postulation Hilbert scheme; ghost terms},
language = {eng},
number = {5},
pages = {1297-1335},
publisher = {Association des Annales de l’institut Fourier},
title = {The Hilbert scheme of space curves of small diameter},
url = {http://eudml.org/doc/10178},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Kleppe, Jan Oddvar
TI - The Hilbert scheme of space curves of small diameter
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1297
EP - 1335
AB - This paper studies space curves $C$ of degree $d$ and arithmetic genus $g$, with homogeneous ideal $I$ and Rao module $M = \textrm{H}_{*}^1(\tilde{I})$, whose main results deal with curves which satisfy $ {_{0}\!\textrm{Ext}_R^2}(M ,M ) = 0 $ (e.g. of diameter, $\textrm{diam} M \le 2$). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, $\textrm{H}(d,g)$, at $(C)$ under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of $C$ turns out to be equivalent to the vanishing of certain graded Betti numbers of the free minimal resolution of $I$. More generally by taking suitable deformations of $C$ we show how to kill repeated direct free factors (“ghost-terms”) in the minimal resolution of $I$, leading to a rather concrete description of the number of irreducible components of $\textrm{H}(d,g)$ which contains an obstructed diameter one curve. We also show that every irreducible component of $\textrm{H}(d,g)$ is reduced in the diameter one case.
LA - eng
KW - Hilbert scheme; space curve; Buchsbaum curve; unobstructedness; cup-product; graded Betti numbers; ghost term; linkage; normal module; postulation Hilbert scheme; ghost terms
UR - http://eudml.org/doc/10178
ER -

References

top
  1. Mutsumi Amasaki, Examples of nonsingular irreducible curves which give reducible singular points of red ( H d , g ) , Publ. RIMS, Kyoto Univ. 21 (1985), 761-786 Zbl0609.14002MR817163
  2. G. Bolondi, J. C. Migliore, On curves with natural cohomology and their deficiency modules, Ann. Inst. Fourier (Grenoble) 43 (1993), 325-357 Zbl0779.14008MR1220272
  3. Giorgio Bolondi, Irreducible families of curves with fixed cohomology, Arch. Math. (Basel) 53 (1989), 300-305 Zbl0658.14005MR1006724
  4. Giorgio Bolondi, Jan O. Kleppe, Rosa María Miró-Roig, Maximal rank curves and singular points of the Hilbert scheme, Compositio Math. 77 (1991), 269-291 Zbl0724.14018MR1092770
  5. Mei-Chu Chang, A filtered Bertini-type theorem, J. Reine Angew. Math. 397 (1989), 214-219 Zbl0663.14008MR993224
  6. David Eisenbud, Commutative algebra, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
  7. Philippe Ellia, D’autres composantes non réduites de Hilb P 3 , Math. Ann. 277 (1987), 433-446 Zbl0635.14006MR891584
  8. Philippe Ellia, Mario Fiorentini, Défaut de postulation et singularités du schéma de Hilbert, Ann. Univ. Ferrara Sez. VII (N.S.) 30 (1984), 185-198 Zbl0577.14019MR796926
  9. Philippe Ellia, Mario Fiorentini, Quelques remarques sur les courbes arithmétiquement Buchsbaum de l’espace projectif, Ann. Univ. Ferrara Sez. VII (N.S.) 33 (1987), 89-111 Zbl0657.14027MR958389
  10. Geir Ellingsrud, Sur le schéma de Hilbert des variétés de codimension 2 dans P e à cône de Cohen-Macaulay, Ann. Sci. École Norm. Sup. (4) 8 (1975), 423-431 Zbl0325.14002MR393020
  11. Gunnar Fløystad, Determining obstructions for space curves, with applications to nonreduced components of the Hilbert scheme, J. Reine Angew. Math. 439 (1993), 11-44 Zbl0765.14015MR1219693
  12. Stéphane Ginouillac, Sur le nombre de composantes du schéma de Hilbert des courbes ACM de P k 3 , C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 857-862 Zbl0961.14002MR1727997
  13. A. Grothendieck, Les schémas de Hilbert, Séminaire Bourbaki 221 (1960), Secrétariat mathématique 
  14. Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux ( S G A 2 ) , (1968), North-Holland Publishing Co., Amsterdam Zbl0197.47202MR476737
  15. Laurent Gruson, Christian Peskine, Genre des courbes de l’espace projectif. II, Ann. Sci. École Norm. Sup. (4) 15 (1982), 401-418 Zbl0517.14007MR690647
  16. Sébastien Guffroy, Sur l’incomplétude de la série linéaire caractéristique d’une famille de courbes planes à nœuds et à cusps, Nagoya Math. J. 171 (2003), 51-83 Zbl1085.14501
  17. Robin Hartshorne, Algebraic Geometry, 52 (1983), Springer-Verlag, New York Zbl0531.14001MR463157
  18. Jan O. Kleppe, The Hilbert-flag scheme, its properties and its connection with the Hilbert scheme. Applications to curves in 3-space Zbl1271.14007
  19. Jan O. Kleppe, The Hilbert scheme of space curves of small Rao module with an appendix on non-reduced components MR1396727
  20. Jan O. Kleppe, Deformations of graded algebras, Math. Scand. 45 (1979), 205-231 Zbl0436.14004MR580600
  21. Jan O. Kleppe, Nonreduced components of the Hilbert scheme of smooth space curves, Space curves (Rocca di Papa, 1985) 1266 (1987), 181-207, Springer, Berlin Zbl0631.14022MR908714
  22. Jan O. Kleppe, Liaison of families of subschemes in P n , Algebraic curves and projective geometry (Trento, 1988) 1389 (1989), 128-173, Springer, Berlin Zbl0697.14003MR1023396
  23. Jan O. Kleppe, Concerning the existence of nice components in the Hilbert scheme of curves in P n for n = 4 and 5 , J. Reine Angew. Math. 475 (1996), 77-102 Zbl0845.14002MR1396727
  24. O. A. Laudal, Matric Massey products and formal moduli. I, Algebra, algebraic topology and their interactions (Stockholm, 1983) 1183 (1986), 218-240, Springer, Berlin Zbl0597.14010MR846451
  25. Olav Arnfinn Laudal, Formal moduli of algebraic structures, 754 (1979), Springer, Berlin Zbl0438.14007MR551624
  26. Mireille Martin-Deschamps, Daniel Perrin, Sur la classification des courbes gauches, Astérisque (1990), 184-185 Zbl0717.14017MR1073438
  27. Mireille Martin-Deschamps, Daniel Perrin, Courbes gauches et modules de Rao, J. Reine Angew. Math. 439 (1993), 103-145 Zbl0765.14017MR1219697
  28. Mireille Martin-Deschamps, Daniel Perrin, Sur les courbes gauches à modules de Rao non connexes, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 233-236 Zbl0840.14017MR1288409
  29. Mireille Martin-Deschamps, Daniel Perrin, Le schéma de Hilbert des courbes gauches localement Cohen-Macaulay n’est (presque) jamais réduit, Ann. Sci. École Norm. Sup. (4) 29 (1996), 757-785 Zbl0892.14005MR1422990
  30. Juan C. Migliore, Introduction to liaison theory and deficiency modules, 165 (1998), Birkhäuser Boston Inc., Boston, MA Zbl0921.14033MR1712469
  31. Juan C. Migliore, Families of reduced zero-dimensional schemes, Collect. Math. 57 (2006), 173-192 Zbl1101.13017MR2223851
  32. Juan C. Migliore, U. Nagel, Tetrahedral curves, Int. Math. Res. Not. (2005), 899-939 Zbl1093.14044MR2147092
  33. Rosa M. Miró-Roig, Unobstructed arithmetically Buchsbaum curves, Algebraic curves and projective geometry (Trento, 1988) 1389 (1989), 235-241, Springer, Berlin Zbl0702.14039MR1023400
  34. David Mumford, Further pathologies in algebraic geometry, Amer. J. Math. 84 (1962), 642-648 Zbl0114.13106MR148670
  35. H. Nasu, Obstructions to deforming space curves and non-reduced components of the Hilbert scheme, Publ. RIMS, Kyoto Univ. (2006), 117-141 Zbl1100.14002MR2215438
  36. Irena Peeva, Consecutive cancellations in Betti numbers, Proc. Amer. Math. Soc. 132 (2004), 3503-3507 Zbl1099.13505MR2084070
  37. A. Prabhakar Rao, Liaison among curves in P 3 , Invent. Math. 50 (1978/79), 205-217 Zbl0406.14033MR520926
  38. E. Sernesi, Un esempio di curva ostruita in 3 , Sem. di variabili Complesse, Bologna (1981), 223-231 MR770798
  39. Charles H. Walter, Horrocks theory and algebraic space curves 
  40. Charles H. Walter, Some examples of obstructed curves in 3 , Complex projective geometry (Trieste, 1989/Bergen, 1989) 179 (1992), 324-340, Cambridge Univ. Press, Cambridge Zbl0787.14021MR1201393

NotesEmbed ?

top

You must be logged in to post comments.