The Hilbert scheme of space curves of small diameter
- [1] Oslo University College Faculty of Engineering Pb. 4 St. Olavs plass 0130, Oslo (Norway)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 5, page 1297-1335
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKleppe, Jan Oddvar. "The Hilbert scheme of space curves of small diameter." Annales de l’institut Fourier 56.5 (2006): 1297-1335. <http://eudml.org/doc/10178>.
@article{Kleppe2006,
abstract = {This paper studies space curves $C$ of degree $d$ and arithmetic genus $g$, with homogeneous ideal $I$ and Rao module $M = \textrm\{H\}_\{*\}^1(\tilde\{I\})$, whose main results deal with curves which satisfy $ \{_\{0\}\!\textrm\{Ext\}_R^2\}(M ,M ) = 0 $ (e.g. of diameter, $\textrm\{diam\} M \le 2$). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, $\textrm\{H\}(d,g)$, at $(C)$ under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of $C$ turns out to be equivalent to the vanishing of certain graded Betti numbers of the free minimal resolution of $I$. More generally by taking suitable deformations of $C$ we show how to kill repeated direct free factors (“ghost-terms”) in the minimal resolution of $I$, leading to a rather concrete description of the number of irreducible components of $\textrm\{H\}(d,g)$ which contains an obstructed diameter one curve. We also show that every irreducible component of $\textrm\{H\}(d,g)$ is reduced in the diameter one case.},
affiliation = {Oslo University College Faculty of Engineering Pb. 4 St. Olavs plass 0130, Oslo (Norway)},
author = {Kleppe, Jan Oddvar},
journal = {Annales de l’institut Fourier},
keywords = {Hilbert scheme; space curve; Buchsbaum curve; unobstructedness; cup-product; graded Betti numbers; ghost term; linkage; normal module; postulation Hilbert scheme; ghost terms},
language = {eng},
number = {5},
pages = {1297-1335},
publisher = {Association des Annales de l’institut Fourier},
title = {The Hilbert scheme of space curves of small diameter},
url = {http://eudml.org/doc/10178},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Kleppe, Jan Oddvar
TI - The Hilbert scheme of space curves of small diameter
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1297
EP - 1335
AB - This paper studies space curves $C$ of degree $d$ and arithmetic genus $g$, with homogeneous ideal $I$ and Rao module $M = \textrm{H}_{*}^1(\tilde{I})$, whose main results deal with curves which satisfy $ {_{0}\!\textrm{Ext}_R^2}(M ,M ) = 0 $ (e.g. of diameter, $\textrm{diam} M \le 2$). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, $\textrm{H}(d,g)$, at $(C)$ under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of $C$ turns out to be equivalent to the vanishing of certain graded Betti numbers of the free minimal resolution of $I$. More generally by taking suitable deformations of $C$ we show how to kill repeated direct free factors (“ghost-terms”) in the minimal resolution of $I$, leading to a rather concrete description of the number of irreducible components of $\textrm{H}(d,g)$ which contains an obstructed diameter one curve. We also show that every irreducible component of $\textrm{H}(d,g)$ is reduced in the diameter one case.
LA - eng
KW - Hilbert scheme; space curve; Buchsbaum curve; unobstructedness; cup-product; graded Betti numbers; ghost term; linkage; normal module; postulation Hilbert scheme; ghost terms
UR - http://eudml.org/doc/10178
ER -
References
top- Mutsumi Amasaki, Examples of nonsingular irreducible curves which give reducible singular points of , Publ. RIMS, Kyoto Univ. 21 (1985), 761-786 Zbl0609.14002MR817163
- G. Bolondi, J. C. Migliore, On curves with natural cohomology and their deficiency modules, Ann. Inst. Fourier (Grenoble) 43 (1993), 325-357 Zbl0779.14008MR1220272
- Giorgio Bolondi, Irreducible families of curves with fixed cohomology, Arch. Math. (Basel) 53 (1989), 300-305 Zbl0658.14005MR1006724
- Giorgio Bolondi, Jan O. Kleppe, Rosa María Miró-Roig, Maximal rank curves and singular points of the Hilbert scheme, Compositio Math. 77 (1991), 269-291 Zbl0724.14018MR1092770
- Mei-Chu Chang, A filtered Bertini-type theorem, J. Reine Angew. Math. 397 (1989), 214-219 Zbl0663.14008MR993224
- David Eisenbud, Commutative algebra, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
- Philippe Ellia, D’autres composantes non réduites de , Math. Ann. 277 (1987), 433-446 Zbl0635.14006MR891584
- Philippe Ellia, Mario Fiorentini, Défaut de postulation et singularités du schéma de Hilbert, Ann. Univ. Ferrara Sez. VII (N.S.) 30 (1984), 185-198 Zbl0577.14019MR796926
- Philippe Ellia, Mario Fiorentini, Quelques remarques sur les courbes arithmétiquement Buchsbaum de l’espace projectif, Ann. Univ. Ferrara Sez. VII (N.S.) 33 (1987), 89-111 Zbl0657.14027MR958389
- Geir Ellingsrud, Sur le schéma de Hilbert des variétés de codimension dans à cône de Cohen-Macaulay, Ann. Sci. École Norm. Sup. (4) 8 (1975), 423-431 Zbl0325.14002MR393020
- Gunnar Fløystad, Determining obstructions for space curves, with applications to nonreduced components of the Hilbert scheme, J. Reine Angew. Math. 439 (1993), 11-44 Zbl0765.14015MR1219693
- Stéphane Ginouillac, Sur le nombre de composantes du schéma de Hilbert des courbes ACM de , C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 857-862 Zbl0961.14002MR1727997
- A. Grothendieck, Les schémas de Hilbert, Séminaire Bourbaki 221 (1960), Secrétariat mathématique
- Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux , (1968), North-Holland Publishing Co., Amsterdam Zbl0197.47202MR476737
- Laurent Gruson, Christian Peskine, Genre des courbes de l’espace projectif. II, Ann. Sci. École Norm. Sup. (4) 15 (1982), 401-418 Zbl0517.14007MR690647
- Sébastien Guffroy, Sur l’incomplétude de la série linéaire caractéristique d’une famille de courbes planes à nœuds et à cusps, Nagoya Math. J. 171 (2003), 51-83 Zbl1085.14501
- Robin Hartshorne, Algebraic Geometry, 52 (1983), Springer-Verlag, New York Zbl0531.14001MR463157
- Jan O. Kleppe, The Hilbert-flag scheme, its properties and its connection with the Hilbert scheme. Applications to curves in 3-space Zbl1271.14007
- Jan O. Kleppe, The Hilbert scheme of space curves of small Rao module with an appendix on non-reduced components MR1396727
- Jan O. Kleppe, Deformations of graded algebras, Math. Scand. 45 (1979), 205-231 Zbl0436.14004MR580600
- Jan O. Kleppe, Nonreduced components of the Hilbert scheme of smooth space curves, Space curves (Rocca di Papa, 1985) 1266 (1987), 181-207, Springer, Berlin Zbl0631.14022MR908714
- Jan O. Kleppe, Liaison of families of subschemes in , Algebraic curves and projective geometry (Trento, 1988) 1389 (1989), 128-173, Springer, Berlin Zbl0697.14003MR1023396
- Jan O. Kleppe, Concerning the existence of nice components in the Hilbert scheme of curves in for and , J. Reine Angew. Math. 475 (1996), 77-102 Zbl0845.14002MR1396727
- O. A. Laudal, Matric Massey products and formal moduli. I, Algebra, algebraic topology and their interactions (Stockholm, 1983) 1183 (1986), 218-240, Springer, Berlin Zbl0597.14010MR846451
- Olav Arnfinn Laudal, Formal moduli of algebraic structures, 754 (1979), Springer, Berlin Zbl0438.14007MR551624
- Mireille Martin-Deschamps, Daniel Perrin, Sur la classification des courbes gauches, Astérisque (1990), 184-185 Zbl0717.14017MR1073438
- Mireille Martin-Deschamps, Daniel Perrin, Courbes gauches et modules de Rao, J. Reine Angew. Math. 439 (1993), 103-145 Zbl0765.14017MR1219697
- Mireille Martin-Deschamps, Daniel Perrin, Sur les courbes gauches à modules de Rao non connexes, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 233-236 Zbl0840.14017MR1288409
- Mireille Martin-Deschamps, Daniel Perrin, Le schéma de Hilbert des courbes gauches localement Cohen-Macaulay n’est (presque) jamais réduit, Ann. Sci. École Norm. Sup. (4) 29 (1996), 757-785 Zbl0892.14005MR1422990
- Juan C. Migliore, Introduction to liaison theory and deficiency modules, 165 (1998), Birkhäuser Boston Inc., Boston, MA Zbl0921.14033MR1712469
- Juan C. Migliore, Families of reduced zero-dimensional schemes, Collect. Math. 57 (2006), 173-192 Zbl1101.13017MR2223851
- Juan C. Migliore, U. Nagel, Tetrahedral curves, Int. Math. Res. Not. (2005), 899-939 Zbl1093.14044MR2147092
- Rosa M. Miró-Roig, Unobstructed arithmetically Buchsbaum curves, Algebraic curves and projective geometry (Trento, 1988) 1389 (1989), 235-241, Springer, Berlin Zbl0702.14039MR1023400
- David Mumford, Further pathologies in algebraic geometry, Amer. J. Math. 84 (1962), 642-648 Zbl0114.13106MR148670
- H. Nasu, Obstructions to deforming space curves and non-reduced components of the Hilbert scheme, Publ. RIMS, Kyoto Univ. (2006), 117-141 Zbl1100.14002MR2215438
- Irena Peeva, Consecutive cancellations in Betti numbers, Proc. Amer. Math. Soc. 132 (2004), 3503-3507 Zbl1099.13505MR2084070
- A. Prabhakar Rao, Liaison among curves in , Invent. Math. 50 (1978/79), 205-217 Zbl0406.14033MR520926
- E. Sernesi, Un esempio di curva ostruita in , Sem. di variabili Complesse, Bologna (1981), 223-231 MR770798
- Charles H. Walter, Horrocks theory and algebraic space curves
- Charles H. Walter, Some examples of obstructed curves in , Complex projective geometry (Trieste, 1989/Bergen, 1989) 179 (1992), 324-340, Cambridge Univ. Press, Cambridge Zbl0787.14021MR1201393
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.