The Hilbert scheme of space curves of small diameter

Jan Oddvar Kleppe[1]

  • [1] Oslo University College Faculty of Engineering Pb. 4 St. Olavs plass 0130, Oslo (Norway)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 5, page 1297-1335
  • ISSN: 0373-0956

Abstract

top
This paper studies space curves C of degree d and arithmetic genus g , with homogeneous ideal I and Rao module M = H * 1 ( I ˜ ) , whose main results deal with curves which satisfy 0 Ext R 2 ( M , M ) = 0 (e.g. of diameter, diam M 2 ). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, H ( d , g ) , at ( C ) under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of C turns out to be equivalent to the vanishing of certain graded Betti numbers of the free minimal resolution of I . More generally by taking suitable deformations of C we show how to kill repeated direct free factors (“ghost-terms”) in the minimal resolution of I , leading to a rather concrete description of the number of irreducible components of H ( d , g ) which contains an obstructed diameter one curve. We also show that every irreducible component of H ( d , g ) is reduced in the diameter one case.

How to cite

top

Kleppe, Jan Oddvar. "The Hilbert scheme of space curves of small diameter." Annales de l’institut Fourier 56.5 (2006): 1297-1335. <http://eudml.org/doc/10178>.

@article{Kleppe2006,
abstract = {This paper studies space curves $C$ of degree $d$ and arithmetic genus $g$, with homogeneous ideal $I$ and Rao module $M = \textrm\{H\}_\{*\}^1(\tilde\{I\})$, whose main results deal with curves which satisfy $ \{_\{0\}\!\textrm\{Ext\}_R^2\}(M ,M ) = 0 $ (e.g. of diameter, $\textrm\{diam\} M \le 2$). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, $\textrm\{H\}(d,g)$, at $(C)$ under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of $C$ turns out to be equivalent to the vanishing of certain graded Betti numbers of the free minimal resolution of $I$. More generally by taking suitable deformations of $C$ we show how to kill repeated direct free factors (“ghost-terms”) in the minimal resolution of $I$, leading to a rather concrete description of the number of irreducible components of $\textrm\{H\}(d,g)$ which contains an obstructed diameter one curve. We also show that every irreducible component of $\textrm\{H\}(d,g)$ is reduced in the diameter one case.},
affiliation = {Oslo University College Faculty of Engineering Pb. 4 St. Olavs plass 0130, Oslo (Norway)},
author = {Kleppe, Jan Oddvar},
journal = {Annales de l’institut Fourier},
keywords = {Hilbert scheme; space curve; Buchsbaum curve; unobstructedness; cup-product; graded Betti numbers; ghost term; linkage; normal module; postulation Hilbert scheme; ghost terms},
language = {eng},
number = {5},
pages = {1297-1335},
publisher = {Association des Annales de l’institut Fourier},
title = {The Hilbert scheme of space curves of small diameter},
url = {http://eudml.org/doc/10178},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Kleppe, Jan Oddvar
TI - The Hilbert scheme of space curves of small diameter
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1297
EP - 1335
AB - This paper studies space curves $C$ of degree $d$ and arithmetic genus $g$, with homogeneous ideal $I$ and Rao module $M = \textrm{H}_{*}^1(\tilde{I})$, whose main results deal with curves which satisfy $ {_{0}\!\textrm{Ext}_R^2}(M ,M ) = 0 $ (e.g. of diameter, $\textrm{diam} M \le 2$). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, $\textrm{H}(d,g)$, at $(C)$ under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of $C$ turns out to be equivalent to the vanishing of certain graded Betti numbers of the free minimal resolution of $I$. More generally by taking suitable deformations of $C$ we show how to kill repeated direct free factors (“ghost-terms”) in the minimal resolution of $I$, leading to a rather concrete description of the number of irreducible components of $\textrm{H}(d,g)$ which contains an obstructed diameter one curve. We also show that every irreducible component of $\textrm{H}(d,g)$ is reduced in the diameter one case.
LA - eng
KW - Hilbert scheme; space curve; Buchsbaum curve; unobstructedness; cup-product; graded Betti numbers; ghost term; linkage; normal module; postulation Hilbert scheme; ghost terms
UR - http://eudml.org/doc/10178
ER -

References

top
  1. Mutsumi Amasaki, Examples of nonsingular irreducible curves which give reducible singular points of red ( H d , g ) , Publ. RIMS, Kyoto Univ. 21 (1985), 761-786 Zbl0609.14002MR817163
  2. G. Bolondi, J. C. Migliore, On curves with natural cohomology and their deficiency modules, Ann. Inst. Fourier (Grenoble) 43 (1993), 325-357 Zbl0779.14008MR1220272
  3. Giorgio Bolondi, Irreducible families of curves with fixed cohomology, Arch. Math. (Basel) 53 (1989), 300-305 Zbl0658.14005MR1006724
  4. Giorgio Bolondi, Jan O. Kleppe, Rosa María Miró-Roig, Maximal rank curves and singular points of the Hilbert scheme, Compositio Math. 77 (1991), 269-291 Zbl0724.14018MR1092770
  5. Mei-Chu Chang, A filtered Bertini-type theorem, J. Reine Angew. Math. 397 (1989), 214-219 Zbl0663.14008MR993224
  6. David Eisenbud, Commutative algebra, 150 (1995), Springer-Verlag, New York Zbl0819.13001MR1322960
  7. Philippe Ellia, D’autres composantes non réduites de Hilb P 3 , Math. Ann. 277 (1987), 433-446 Zbl0635.14006MR891584
  8. Philippe Ellia, Mario Fiorentini, Défaut de postulation et singularités du schéma de Hilbert, Ann. Univ. Ferrara Sez. VII (N.S.) 30 (1984), 185-198 Zbl0577.14019MR796926
  9. Philippe Ellia, Mario Fiorentini, Quelques remarques sur les courbes arithmétiquement Buchsbaum de l’espace projectif, Ann. Univ. Ferrara Sez. VII (N.S.) 33 (1987), 89-111 Zbl0657.14027MR958389
  10. Geir Ellingsrud, Sur le schéma de Hilbert des variétés de codimension 2 dans P e à cône de Cohen-Macaulay, Ann. Sci. École Norm. Sup. (4) 8 (1975), 423-431 Zbl0325.14002MR393020
  11. Gunnar Fløystad, Determining obstructions for space curves, with applications to nonreduced components of the Hilbert scheme, J. Reine Angew. Math. 439 (1993), 11-44 Zbl0765.14015MR1219693
  12. Stéphane Ginouillac, Sur le nombre de composantes du schéma de Hilbert des courbes ACM de P k 3 , C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 857-862 Zbl0961.14002MR1727997
  13. A. Grothendieck, Les schémas de Hilbert, Séminaire Bourbaki 221 (1960), Secrétariat mathématique 
  14. Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux ( S G A 2 ) , (1968), North-Holland Publishing Co., Amsterdam Zbl0197.47202MR476737
  15. Laurent Gruson, Christian Peskine, Genre des courbes de l’espace projectif. II, Ann. Sci. École Norm. Sup. (4) 15 (1982), 401-418 Zbl0517.14007MR690647
  16. Sébastien Guffroy, Sur l’incomplétude de la série linéaire caractéristique d’une famille de courbes planes à nœuds et à cusps, Nagoya Math. J. 171 (2003), 51-83 Zbl1085.14501
  17. Robin Hartshorne, Algebraic Geometry, 52 (1983), Springer-Verlag, New York Zbl0531.14001MR463157
  18. Jan O. Kleppe, The Hilbert-flag scheme, its properties and its connection with the Hilbert scheme. Applications to curves in 3-space Zbl1271.14007
  19. Jan O. Kleppe, The Hilbert scheme of space curves of small Rao module with an appendix on non-reduced components MR1396727
  20. Jan O. Kleppe, Deformations of graded algebras, Math. Scand. 45 (1979), 205-231 Zbl0436.14004MR580600
  21. Jan O. Kleppe, Nonreduced components of the Hilbert scheme of smooth space curves, Space curves (Rocca di Papa, 1985) 1266 (1987), 181-207, Springer, Berlin Zbl0631.14022MR908714
  22. Jan O. Kleppe, Liaison of families of subschemes in P n , Algebraic curves and projective geometry (Trento, 1988) 1389 (1989), 128-173, Springer, Berlin Zbl0697.14003MR1023396
  23. Jan O. Kleppe, Concerning the existence of nice components in the Hilbert scheme of curves in P n for n = 4 and 5 , J. Reine Angew. Math. 475 (1996), 77-102 Zbl0845.14002MR1396727
  24. O. A. Laudal, Matric Massey products and formal moduli. I, Algebra, algebraic topology and their interactions (Stockholm, 1983) 1183 (1986), 218-240, Springer, Berlin Zbl0597.14010MR846451
  25. Olav Arnfinn Laudal, Formal moduli of algebraic structures, 754 (1979), Springer, Berlin Zbl0438.14007MR551624
  26. Mireille Martin-Deschamps, Daniel Perrin, Sur la classification des courbes gauches, Astérisque (1990), 184-185 Zbl0717.14017MR1073438
  27. Mireille Martin-Deschamps, Daniel Perrin, Courbes gauches et modules de Rao, J. Reine Angew. Math. 439 (1993), 103-145 Zbl0765.14017MR1219697
  28. Mireille Martin-Deschamps, Daniel Perrin, Sur les courbes gauches à modules de Rao non connexes, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 233-236 Zbl0840.14017MR1288409
  29. Mireille Martin-Deschamps, Daniel Perrin, Le schéma de Hilbert des courbes gauches localement Cohen-Macaulay n’est (presque) jamais réduit, Ann. Sci. École Norm. Sup. (4) 29 (1996), 757-785 Zbl0892.14005MR1422990
  30. Juan C. Migliore, Introduction to liaison theory and deficiency modules, 165 (1998), Birkhäuser Boston Inc., Boston, MA Zbl0921.14033MR1712469
  31. Juan C. Migliore, Families of reduced zero-dimensional schemes, Collect. Math. 57 (2006), 173-192 Zbl1101.13017MR2223851
  32. Juan C. Migliore, U. Nagel, Tetrahedral curves, Int. Math. Res. Not. (2005), 899-939 Zbl1093.14044MR2147092
  33. Rosa M. Miró-Roig, Unobstructed arithmetically Buchsbaum curves, Algebraic curves and projective geometry (Trento, 1988) 1389 (1989), 235-241, Springer, Berlin Zbl0702.14039MR1023400
  34. David Mumford, Further pathologies in algebraic geometry, Amer. J. Math. 84 (1962), 642-648 Zbl0114.13106MR148670
  35. H. Nasu, Obstructions to deforming space curves and non-reduced components of the Hilbert scheme, Publ. RIMS, Kyoto Univ. (2006), 117-141 Zbl1100.14002MR2215438
  36. Irena Peeva, Consecutive cancellations in Betti numbers, Proc. Amer. Math. Soc. 132 (2004), 3503-3507 Zbl1099.13505MR2084070
  37. A. Prabhakar Rao, Liaison among curves in P 3 , Invent. Math. 50 (1978/79), 205-217 Zbl0406.14033MR520926
  38. E. Sernesi, Un esempio di curva ostruita in 3 , Sem. di variabili Complesse, Bologna (1981), 223-231 MR770798
  39. Charles H. Walter, Horrocks theory and algebraic space curves 
  40. Charles H. Walter, Some examples of obstructed curves in 3 , Complex projective geometry (Trieste, 1989/Bergen, 1989) 179 (1992), 324-340, Cambridge Univ. Press, Cambridge Zbl0787.14021MR1201393

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.